Our Pipeline

We are focused on two target therapeutic areas: oncology and immunological diseases.

We have created a broad pipeline of drug candidates.  We have taken a chemistry-focused approach to develop highly selective small molecule tyrosine kinase inhibitors that are intended to have potentially global best-in-class efficacy and are deliberately engineered to improve drug exposure and reduce known class-related toxicities.

Some of our current drug candidates may have the potential to be global first-in-class therapies, while others may be sufficiently differentiated to potentially be global best-in-class, next generation therapies with a superior profile compared to existing approved drugs that act against the relevant kinase targets.

For more information on recent developments, please refer to our latest presentations or our latest financial reports.

Summary Chart

Updated as of July 31, 2017.

Notes: * = when an NDA submission is possible based on the receipt of favorable clinical data; Proof-of-concept = Phase Ib/II study (the dashed lines delineate the start and end of Phase Ib); combo = in combination with; brain mets = brain metastasis; VEGFR = vascular endothelial growth factor receptor; TKI = tyrosine kinase inhibitor; EGFR = epidermal growth factor receptor; NET = neuroendocrine tumors; ref = refractory, which means resistant to prior treatment; T790M= EGFR resistance mutation; EGFRm+ = epidermal growth factor receptor activating mutations; EGFR wild-type = epidermal growth factor receptor wild-type; 5ASA = 5-aminosalicyclic acids; chemo = chemotherapy; c-Met+ = c-Met gene amplification; c-Met O/E = c-Met overexpression; FGFR = Fibroblast Growth Factor Receptor ; CSF1R = Colony Stimulating Factor-Receptor 1; NCI = U.S. National Cancer Institute; Aus = Australia; SK = South Korea; PRC = People’s Republic of China; UK = United Kingdom; US = United States;
Global = >1 country.

 

Savolitinib (AZD6094/HMPL-504)

Savolitinib is a potential global first-in-class inhibitor of the mesenchymal epithelial transition factor (c-MET) receptor tyrosine kinase, an enzyme which has been shown to function abnormally in many types of solid tumors. We designed savolitinib as a potent and highly selective oral inhibitor which through chemical structure modification addressed renal toxicity, the primary issue that has prevented all other selective c-MET inhibitors from gaining regulatory approval. In our clinical studies savolitinib has exhibited no renal toxicity and has shown promising signs of critical efficacy, causing tumor size reduction in patients with c-MET gene amplification, in papillary renal cell carcinoma, non-small cell lung cancer, colorectal cancer and gastric cancer.

We are currently testing savolitinib in partnership with AstraZeneca in multiple parallel studies, both as a monotherapy and in combination with other targeted therapies and chemotherapy.

Fruquintinib (HMPL-013)

Fruquintinib is a highly selective and potent oral inhibitor of vascular endothelial growth factor receptor (VEGFR) and consequently we believe that it has the potential to be a global best-in-class VEGFR inhibitor for many types of solid tumors. Based on pre-clinical and clinical data to date, fruquintinib’s kinase selectivity has been shown to reduce off-target toxicity. This allows for drug exposure that can fully inhibit VEGFR, a receptor tyrosine kinase which contributes to angiogenesis, the build-up of new blood vessels around a tumor, thereby contributing to the growth of tumors, and use in potential combinations with other targeted therapies and chemotherapy in earlier lines of treatment with larger patient populations. We believe these are points of meaningful differentiation versus other small molecule VEGFR inhibitors that have already been approved.

In partnership with Eli Lilly, we are currently studying fruquintinib in colorectal cancer, non-small cell lung cancer and gastric cancer in China. We have established a manufacturing (formulation) facility in Suzhou, China, which produces supplies of fruquintinib.

Sulfatinib (HMPL-012)

Sulfatinib is an oral drug candidate that selectively inhibits the tyrosine kinase activity associated with vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor 1 (FGFR1), a receptor for a protein which also plays a role in tumor growth, and colony stimulating factor-1 receptor (CSF-1R), a signaling pathway involved in blocking the activation of tumor-associated macrophages, which cloak cancer cells from attack from killer T-cells.

We are currently conducting multiple clinical trials of sulfatinib in disease areas such as pancreatic and non-pancreatic neuroendocrine tumors and biliary tract cancer, and retain all rights to sulfatinib worldwide.  Sulfatinib is the first oncology candidate that we have taken through proof-of-concept in China and expanded to a U.S. clinical study ourselves.

Epitinib (HMPL-813)

A significant portion of patients with non-small cell lung cancer go on to develop brain metastasis.  Patients with brain metastasis suffer from poor prognosis with a median overall survival of less than six months and low quality of life with limited treatment options. Epitinib is a potent and highly selective oral epidermal growth factor receptor (EGFR) inhibitor which has demonstrated brain penetration and efficacy in pre-clinical and now clinical studies. EGFR inhibitors have revolutionized the treatment of non-small cell lung cancer with EGFR activating mutations. However, approved EGFR inhibitors such as gefitinib and erlotinib cannot penetrate the blood-brain barrier effectively, leaving many patients with brain metastasis without an effective targeted therapy. We currently retain all rights to epitinib worldwide.

Theliatinib (HMPL-309)

Like epitinib, theliatinib is a novel molecule epidermal growth factor receptor (EGFR) inhibitor under investigation for the treatment of solid tumors. Tumors with wild-type EGFR activation, for instance, through gene amplification or protein over-expression, are less sensitive to current EGFR tyrosine kinase inhibitors, Iressa and Tarceva, due to sub-optimal binding affinity. Theliatinib has been designed with strong affinity to the wild-type EGFR kinase and has been shown to be five to ten times more potent than Tarceva. Consequently, we believe that theliatinib could benefit patients with esophageal and head and neck cancer, tumor-types with a high incidence of wild-type EGFR activation. We currently retain all rights to theliatinib worldwide.

HMPL-523

We believe HMPL-523 is a potential global first-in-class oral inhibitor targeting spleen tyrosine kinase (Syk), a key protein involved in B-cell signaling. Modulation of the B-cell signaling system has been proven to significantly advance the treatment of certain chronic immune diseases, such as rheumatoid arthritis as well as hematological cancers. To date, only monoclonal antibody immune modulators, which seek to use the patient’s own immune system to treat the disease, have been approved. As an oral drug candidate, we believe HMPL-523 has important advantages over intravenous monoclonal antibody immune modulators in rheumatoid arthritis in that as small molecule compounds clear the system faster, thereby reducing the risk of infections from sustained suppression of the immune system.

Moreover, other drug development companies have tried to design small molecule Syk inhibitors for the treatment of chronic immune diseases. However, designing an efficacious and safe Syk inhibitor for a major chronic disease has proven to be exceptionally difficult due to off-target toxicity, such as hypertension, as a result of poor kinase selectivity. HMPL-523 is a potent and highly selective oral inhibitor specifically designed to overcome these off-target toxicity issues. We believe the market potential for a successful Syk inhibitor is substantial. We currently retain all rights to HMPL-523 worldwide.

HMPL-689

HMPL-689 is a novel, highly selective and potent small molecule inhibitor targeting the isoform phosphoinositide 3’-kinase delta (PI3Kδ), a key component in the B-cell receptor signaling pathway. We have designed HMPL-689 with superior PI3Kδ isoform selectivity, in particular to not inhibit PI3Kɣ (gamma), to minimize the risk of serious infection caused by immune suppression. HMPL-689’s strong potency, particularly at the whole blood level, also allows for reduced daily doses to minimize compound related toxicity, such as the high level of liver toxicity observed with the approved first generation PI3Kδ inhibitor.  HMPL-689’s pharmacokinetic properties have been found to be favorable with expected good oral absorption, moderate tissue distribution and low clearance in preclinical pharmacokinetic studies.  We also expect HMPL-689 will have low risk of drug accumulation and drug-to-drug interaction. Given this, we believe that HMPL-689 has the potential to be a global best-in-class PI3Kδ agent.  We currently retain all rights to HMPL-689 worldwide.

HMPL-453

HMPL-453 is a potential first-in-class novel, highly selective and potent small molecule that targets fibroblast growth factor receptor (FGFR) 1/2/3, a sub-family of receptor tyrosine kinases. Aberrant FGFR signaling has been found to be a driving force in tumor growth (through tissue growth and repair), promotion of angiogenesis and resistance to anti-tumor therapies. To date, there are no approved therapies specifically targeting the FGFR signaling pathway. In pre-clinical studies, HMPL-453 demonstrated superior kinase selectivity and safety profile as well as strong anti-tumor potency, as compared to drug candidates in the same class. Abnormal FGFR gene alterations are believed to be the drivers of tumor cell proliferation in several solid tumor settings. We currently retain all rights to HMPL-453 worldwide.

HMPL-004

HMPL-004 is a proprietary botanical drug for the treatment of inflammatory bowel diseases, namely ulcerative colitis and Crohn’s disease.  As part of our broad gastrointestinal disease research and development joint venture with Nestle Health Science, Nutrition Science Partners Limited, HMPL-004 was in global Phase III registration trials during 2013 and 2014.  NSP is in the process of developing a more concentrated version of HMPL-004.