

HUTCHISON CHINA MEDITECH

2016 Interim Results

AIM/Nasdaq:HCM August 2, 2016

Safe harbor statement & disclaimer

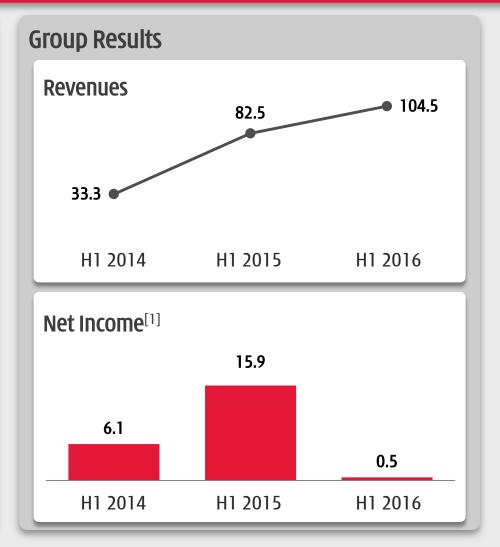
This presentation contains forward-looking statements within the meaning of the "safe harbor" provisions of the U.S. Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by words like "will," "expects," "anticipates," "future," "intends," "plans," "believes," "estimates," "pipeline," "could," "potential," "believe," "first-in-class," "best-in-class," "believes," "first-in-class," "best-in-class," "believes," "first-in-class," "believes," "beli "designed to," "objective," "guidance," "pursue," or similar terms, or by express or implied discussions regarding potential drug candidates, potential indications for drug candidates or by discussions of strategy, plans, expectations or intentions. You should not place undue reliance on these statements. Such forward-looking statements are based on the current beliefs and expectations of management regarding future events, and are subject to significant known and unknown risks and uncertainties. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those set forth in the forward-looking statements. There can be no quarantee that any of our drug candidates will be approved for sale in any market, or that any approvals which are obtained will be obtained at any particular time, or that any such drug candidates will achieve any particular revenue levels. In particular, management's expectations could be affected by, among other things: unexpected regulatory actions or delays or government regulation generally; the uncertainties inherent in research and development, including the inability to meet our key study assumptions regarding enrollment rates, timing and availability of subjects meeting a study's inclusion and exclusion criteria and funding requirements, changes to clinical protocols, unexpected adverse events or safety, quality or manufacturing issues; the inability of a drug candidate to meet the primary or secondary endpoint of a study; the inability of a drug candidate to obtain regulatory approval in different jurisdictions or gain commercial acceptance after obtaining regulatory approval; global trends toward health care cost containment, including ongoing pricing pressures; uncertainties regarding actual or potential legal proceedings, including, among others, actual or potential product liability litigation, litigation and investigations regarding sales and marketing practices, intellectual property disputes, and government investigations generally; and general economic and industry conditions, including uncertainties regarding the effects of the persistently weak economic and financial environment in many countries and uncertainties regarding future global exchange rates. For further discussion of these and other risks, see Chi-Med's filings with the U.S. Securities and Exchange Commission and on AIM. Chi-Med is providing the information in this presentation as of this date and does not undertake any obligation to update any forward-looking statements as a result of new information, future events or otherwise.

In addition, this presentation contains statistical data and estimates that we obtained from industry publications and reports generated by third-party market research firms, including Frost & Sullivan, an independent market research firm, and publicly available data. All patient population, market size and market share estimates are based on Frost & Sullivan research, unless otherwise noted. Although we believe that the publications, reports and surveys are reliable, we have not independently verified the data. Such data involves risks and uncertainties and are subject to change based on various factors, including those discussed above.

Nothing in this presentation or in any accompanying management discussion of this presentation constitutes, nor is it intended to constitute or form any part of: (i) an invitation or inducement to engage in any investment activity, whether in the United States, the United Kingdom or in any other jurisdiction; (ii) any recommendation or advice in respect of any securities of Chi-Med; or (iii) any offer for the sale, purchase or subscription of any securities of Chi-Med.

No representation or warranty, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information, or opinions contained herein. Neither Chi-Med, nor any of Chi-Med's advisors or representatives shall have any responsibility or liability whatsoever (for negligence or otherwise) for any loss howsoever arising from any use of this presentation or its contents or otherwise arising in connection with this presentation. The information set out herein may be subject to updating, completion, revision, verification and amendment and such information may change materially.

All references to "Chi-Med" as used throughout this presentation refer to Hutchison China MediTech Limited and its subsidiaries. This presentation should be read in conjunction with Chi-Med's interim results for the six months ended June 30, 2016, copies of which are available on Chi-Med's website (www.chi-med.com).

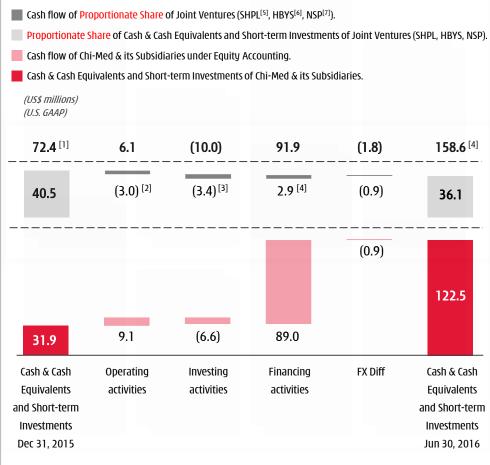

H1 2016 Financial Results

Profitable - despite \$36m in innovation investment

Statement of Operations Summary

	H1-	H1-	H1-	Char	
	2014	2015	2016	14-15	15-16
REVENUES	33.3	82.5	104.5	147%	27%
Unconsolidated JV Revenues	225.1	229.8	249.6		
NET (LOSS)/INCOME [1]			_		
INNOVATION PLATFORM	(6.8)	2.0	(13.7)	n/a	n/a
Base HMP Operations	(1.1)	4.0	(11.6)		
50% share of Nestle JV (NSP) ^[2]	(5.7)	(2.0)	(2.1)		
COMMERCIAL PLATFORM [3]	17.5	19.8	22.1	13%	12%
Prescription Drugs Business	10.4	11.9	15.3		
Consumer Health Business	7.1	7.9	6.8		
Chi-Med Group Costs	(5.5)	(5.9)	(7.9)	-7%	-33%
General & Administrative Expenses	(4.0)	(4.2)	(5.8)		
Interest/Tax	(1.5)	(1.7)	(2.1)		
Discontinued Operations	0.9	-	-		
Net Income Attrib. to Chi-Med	6.1	15.9	0.5	162%	-97%
Accretion on redeemable NCI [4]	(8.3)	(42.0)			
Net Income/(Loss) Attrib. to Ord. S-H	(2.2)	(26.1)	0.5		
EPS Attrib. to Ord. S-H (Basic) (US\$)[5]	(0.04)	(0.49)	0.01		

Strengthened cash position


Nasdaq listing, new bank facilities, land compensation & subsidies all contributing

Chi-Med Group-level Cash Position:

- \$197.5 million available cash resources as at June 30, 2016 (Dec 31, 2015: \$38.8m).
 - √ \$122.5m cash & cash equivalents and short-term investments
 (3-6 month) raised \$95.9m (net of costs) on Nasdaq in Mar
 2016.
 - √ \$75.0m unutilized bank facilities established \$60.0m
 unsecured 12-18 month credit facilities with Bank of America
 Merrill Lynch and Deutsche Bank in Feb 2016.
- \$41.9 million in bank borrowings as at June 30, 2016 (Dec 31, 2015: \$49.8m).

JV-level Cash Position:

- \$72.2 million available cash as at June 30, 2016 (Dec 31, 2015: \$80.9m).
 - √ \$72.2m cash & cash equivalents & short-term investments.
 - √ ~\$70.0m cash from land compensation & subsidies due in Q4
 2016^[8] ~\$40m dividend to Chi-Med Group level in H1 2017.

- [1] Cash & Cash Equivalents and Short-term Investments of Chi-Med & its Subsidiaries & Proportionate Share of Joint Ventures (SHPL, HBYS, NSP).
- [2] \$12.9m proportionate share of cash generated from operating activities less \$15.9m adjustment of dividend received in consolidation level.
- [3] \$8.4m proportionate share of cash used in investing activities less \$5.0m adjustment of capital injection to NSP in consolidation level.
- [4] \$8.0m proportionate share of cash used in financing activities less \$10.9m adjustment mentioned in item [2] and [3].

2016 Guidance

A big year on all levels

	2014	2015	2016 Guidance
Group consolidated revenue	87.3	178.2	190.0 - 205.0
Innovation Platform			
Consolidated revenue	20.3	52.0	35.0 - 40.0
Innovation Platform operating expenses	(42.5)	(55.8)	(80.0) - (85.0)
Commercial Platform			
Sales (consolidated)	67.0	126.2	155.0 - 165.0
Sales of non-consolidated joint ventures	398.4	392.7	430.0 - 440.0
Net income attributable to Chi-Med – Total	22.8	25.2	63.0 - 66.0
- Core business	22.8	25.2	28.0 - 29.0
- One-time property compensation gain	-	-	35.0 - 37.0
Chi-Med Group Costs			
General & administrative expenses (incl. interest/tax)	(9.0)	(13.4)	(16.0) - (18.0)
Discontinued Operations	1.0	-	-
Net (Loss)/Income Attributable to Chi-Med	(7.3)	8.0	0.0 - 5.0

Risk-balanced approach

FIRST

be the <u>fastest to solve</u> <u>issues</u> on high potential but difficult targets.

- Fix compound-related issues of failed first movers - c-Met (renal tox.) & Syk (selectivity).
- Difficult novel kinase targets with deep body of evidence - FGFR (patient selection).
- Take fast action while others stuck in debate.
- Deep & DIVERSIFIED clinical pipeline.

BEST

use world-class chemistry to design differentiated 2nd generation TKIs.

- No target related risk **VEGFR**, **EGFR** & **PI3Ko**.
- Create 2nd generation TKIs w/ high selectivity & superior pharmacokinetic properties.
- A lot of room to optimize 1st generation TKIs tolerability, safety, efficacy.
- MULTIPLE fully funded pivotal studies - Not a binary proposition.

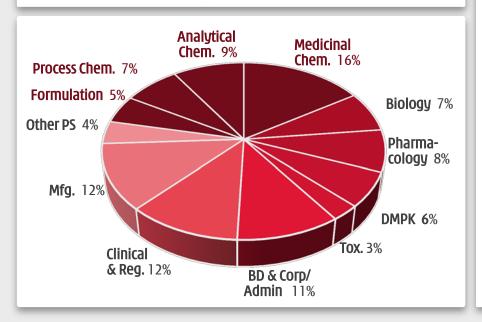
STRENGTHS

Lower costs, huge team, & low-risk /fast clinical

- <u>leveraging China's</u> advantages.
- Large China patient population enables rapid
 lower risk development to proof-of-concept.
- Can afford to run >310-person scientific team to create/manage diversified 7 asset portfolio.
- Practical, minimally dilutive, finance.

 SOLID CASH flow from Commercial Platform & global partners.

Exceptional scale for pre-approval biotech



15 years with almost \$400 million invested to-date

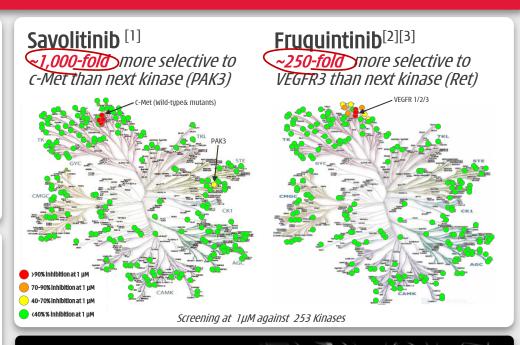
One of the leading China-based innovators in oncology & immunology

>310 SCIENTISTS & STAFF[1]

- √ 198 with advanced technical degrees
- ✓ 24 M.D.S
- √ 52 doctorate degrees

OUR ADVANTAGES

- ✓ Large-scale fully integrated in house platform chemistry, biology, pharmacology, DMPK, Tox., CMC, C&R, and translational organizations working together seamlessly and continuously.
- ✓ China clinical speed


 major unmet medical needs (3.4 million new cancer patients / year^[2]),
 rapid development and regulatory support. Allows for study of multiple indications, PoC in China.
- ✓ Competitive costs overall clinical costs, particularly pre-PoC, a fraction of US or Europe.
- ✓ **Constancy of purpose**15 years with continuous financial support.

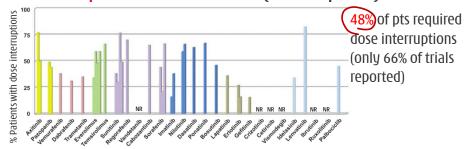
Chemistry is our edge

Seriously selective small molecules

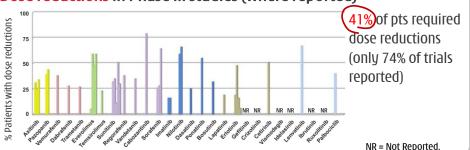
- 1. Fragment-based design of Novel Chemical Entities.
- Internally designed (all 7) clinical drug candidates.
- Use of co-crystal structures.
- Focus on small molecule interactions with tyrosine kinases - proteins/enzymes involved in cell signaling.
- 2. Total focus/discipline in designing and progressing drug candidates with superior kinase selectivity.
- Optimize binding to on target protein, minimize offtarget protein binding.
- No off-target kinase inhibition gives compound the chance to be more potent, attaining better target coverage with less toxicity.
- Combinability clean compounds allow for combinations with other tyrosine kinase inhibitors ("TKIs"), immunotherapy & chemotherapy agents.

Use of co-crystal structures Focus on small molecule interactions with kinases ✓ Optimize binding to ontarget protein, for potency. ✓ Minimize binding to offtarget proteins for selectivity.

Superior selectivity = Better tolerability



More patient use = prolonged/total target coverage = better efficacy


3. Better tolerability important for sustained usage... Review of 28 FDA approved small molecule oncology targeted therapies revealed high incidence of toxicity^[1]

- Pronounced in drugs with narrow therapeutic index (i.e. efficacious dose at or near MTD).
- Combination trials even harder 64% with grade 3-4 toxicities vs. 37% in monotherapy trials.

Dose interruptions in Phase III studies (where reported)

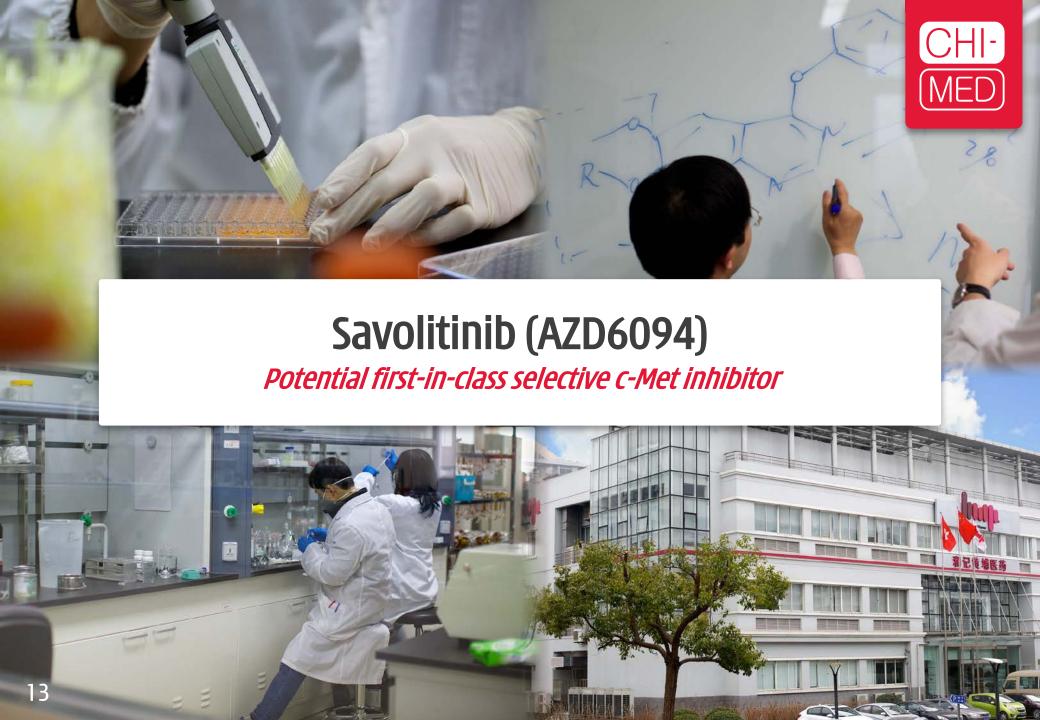
Dose reductions in Phase III studies (where reported)

4. ...whereas 1st gen. multi-kinase inhibitors require substantial dose modifications (interruptions/reductions).

Drug – targets	2015 Sales	Phase III Study	Dose Interruptions	Dose Reductions
Sunitinib (Sutent®) -VEGFR1,2,3, PDGFRβ, FLT3, CSF-1R, c-Kit, Ret	\$1.12b	1L RCC – Sunitinib vs. placebo	54% vs 39%	52% vs 27% (Gr 3/4 AE: 77% vs 55%)
Sorafenib (Nexavar®) – RAF, VEGFR2, PDGFRβ, Fit3, c-Kit, FGFR1	\$0.98b	1L RCC – Sorafenib Vs. placebo		(Gr 3/4 AE: 38% vs 28%)
Axitinib (Inlyta®) – VEGFR1,2,3, PDGFRα, c-kit	\$0.43b	2L RCC – Axitinib Vs. Sorafenib	Dose Mods: 55% vs 62%	34% vs 54%
Pazopanib (Votrient®) - VEGFR1,2,3, c- KIT, ITK, LCK, PDGFRα,β, FGFR1,3, c-Fms	\$0.57b	1L/2L RCC - Pazopanib vs. placebo	42%	36%
Regorafenib (Stivarga®) - VEGFR1,2,3, Raf, Ret, PDGFR, C-Kit	\$0.34b	2L CRC - Regorafenib vs. placebo	61%	38%
Lenvatinib (Lenvima®) – VEGFR1,2,3, Ret, PDGFR, c-Kit, FGFR1,2,3,4	\$0.11b	DTC - Lenvantinib vs. placebo	82% vs 18%	68% vs 5%
Cabozantinib (Cometriq®) – AXL, c-Kit, FLT-3, MET, RET, TIE-2, TrkB, VEGFR1,2,3	\$0.03b	2L RCC – Cabozantinib vs. everolimus		62% vs 25%
Savolitinib – c-Met (Ph I/Ib/II)		Several open-label studies	28%	8%
Fruquintinib - VEGFR1,2,3 (Ph II)		≥3L CRC - Fruquintinib vs. placebo	34% vs. 13%	28% vs. 13%
Fruquintinib - VEGFR1,2,3 (Ph II)		3L NSCLC - Fruquintinib vs. placebo	13% vs. 0%	13% vs. 0%
Sulfatinib - VEGFR 1,2,3, FGFR1		Several open-label studies	34%	17%
Epitinib – EGFR (Ph I/II)		NSCLC w/brain mets - Epitinib (PhI/Ib)	13%	6%

^[1] FDA approved btw Jan '02 to Feb '15. Roda D et al. "Are Doses and Schedules of Small-Molecule Targeted Anticancer Drugs Recommended by Phase I Studies Realistic?" Clinical Cancer Research 2016 May 1;22(9):2127-32.

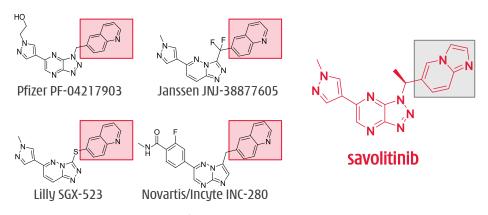
^[2] Sources: Prescribing information; Chi-Med data


25 active clinical trials on 7 drug candidates

4 Phase III studies ongoing - further 3 pivotal studies likely to start in H12017

Program	Target	Partner	Study number/Indication	Latest Status	Line	Target patient	Combo therapy	Site	Preclin.	Ph.I	Proof-of-con	cept Pivota	al/Ph.III
			1. Papillary renal cell carcinoma	Report Ph.II early 2017; Ph.III start early 2017	1st	c-Met-driven		Global				*	
		_	2. Papillary renal cell carcinoma	Enrolling (dose finding)	-	All	durvalumab (PD-L1)	UK				*	
		Astra	3. Clear cell renal cell carcinoma	Start when Study 2/4 begin Ph.Ib expansion stage	2nd	VEGF TKI refractory		UK				*	
		₩	4. Clear cell renal cell carcinoma	Enrolling (dose finding)	2nd	VEGF TKI refractory	durvalumab (PD-L1)	UK				*	
Cavalitinib		22	5. Non-small cell lung cancer	Ph.IIb expans'n enrolling; Pivotal decision H1 2017	2nd	EGFR TKI refractory	Tagrisso® (T790M)	Global				*	
Savolitinib (AZD6094/	c-Met	Zene	6. Non-small cell lung cancer	Ph.IIa enrolling			Tagrisso® (T790M)	Global			i l	*	
volitinib)	C-MCC	문	7. Non-small cell lung cancer	Ph.IIa complete; Ph.IIb expansion start end 2016	2nd	EGFR TKI refractory	Iressa® (EGFR)	China				*	
Volicinio		Ĉ	8. Non-small cell lung cancer	Ph.IIa enrolling	1st	c-Met+/Ex.14skip		China				*	
		4	9. Gastric cancer	Ph.Ib enrolling	-	c-Met+		SK/PRC		i		*	
			10. Gastric cancer	Complete	-	c-Met O/E		China				*	
			11. Gastric cancer	Ph.Ib enrolling	-	c-Met+	docetaxel (chemo)	SK/PRC				*	
			12. Gastric cancer	Ph.Ib enrolling	-	c-Met O/E	docetaxel (chemo)	SK/PRC				*	
	VEGFR	- 0	14. Colorectal cancer	Ph.III complete ; report early 2017; NDA mid 2017		All		China			i i		*
Fruquintinib ^[1]	1/2/3	Lilly	15. Non-small cell lung cancer	Ph.III enrolling; report Ph.II data late 2016		All		China			n/a		*
	1,2,3		16. Gastric cancer	Ph.Ib complete - Ph.II/III start early 2017		All	paclitaxel (chemo)	China					*
			17. Neuroendocrine tumors	Report Ph.II data early 2017		All		China			<u> </u>		*
	VEGFR/		17a. Pancreatic NET	Ph.III enrolling		All		China					*
Sulfatinib	FGFR1		17b. Non-pancreatic NET	Ph.III enrolling		All		China			l l		*
			18. Neuroendocrine tumors	Ph.I Caucasian dose escalation enrolling		All		US			<u> </u>	*	
			19. Thyroid cancer	Ph.II enrolling		Radiotherapy ref.		China					*
HMPL-523	Syk		20. RA, MS, lupus	Ph. I complete; preparing for Ph.II in 2017		All		Aus					*
			21. Hematological cancers	Ph.I enrolling; target complete Ph.I early 2017	2nd/3rd			Aus				*	
Epitinib	EGFRm+		22. Non-small cell lung cancer	Report Ph.Ib data late 2016; Pivotal start H1 2017		EGFRm+ brain mets		China				*	
Theliatinib	EGFR WT		23. Esophageal, Head & Neck can.			EGFR wild-type		China					*
HMPL-689	ЫЗКΩ		24. Hematological cancers	Ph.I dose escalation enrolling	2nd/3rd			Aus					*
	NF-ĸB		Ulcerative colitis (Induction)	Reformulation; re-start Ph.I in 2017		5ASA refractory	5ASA	Global			n/a !		*
HMPL-004	(TNF-α,	Nestle Health	Ulcerative colitis (Maintenance)	Await positive Ph.II in Ulcerative Colitis (Induction)		5ASA refractory	5ASA	Global			n/a i		*
	etc)	Science	Crohn's disease	Await positive Ph.II in Ulcerative Colitis (induction)	1st			Global			n/a		*
HMPL-453	FGFR1-3		Solid tumors	IND submitted; start Ph.I in late 2016	1st			-				*	
Research	Novel		Inflammation	Ongoing	1st	All		-					*

Oncology Immunology



Savolitinib (AZD6094)

Potential global first-in-class selective c-Met inhibitor

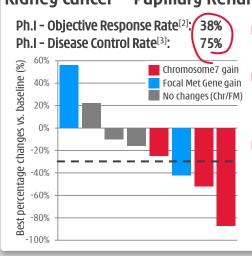
- 1. In strong position to become first selective c-Met inhibitor approved globally.
 - ✓ Clear clinical efficacy observed in non-small cell lung ("NSCLC"), kidney, gastric and colorectal cancers.
 - ✓ Partnered with AstraZeneca key competitive advantages in NSCLC & molecular selection arenas.
- 3. Savolitinib design eliminates renal toxicity first generation of selective c-Met inhibitors encountered >370 patients treated to-date with no renal toxicity.

2-quinolinone metabolite in humans in 1st gen c-Met compounds has dramatically reduced solubility and appeared to crystallize in the kidney resulting in obstructive toxicity.

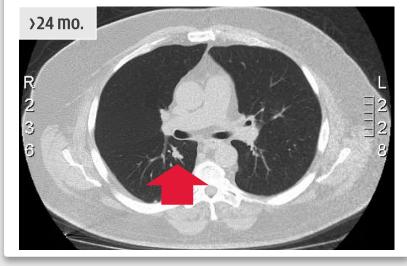
2. c-Met is aberrant in many tumor settings.^[3]

	c-Met			New Cases	(2015)
Indication	Amplifi- cation	Mutation	Over- Expression	Global	China
Gastric	10%	1%	41%	1,034,000	454,000
Lung (Non-small cell)	8-10%[1]	8%	67%	1,690,000	623,000
Head & Neck		11%	46%	740,000	90,000
Colorectal	10%		65%	1,477,000	283,000
Renal cell Carcinoma (Papillary)	40-70%	100%[2]		50,000	7,800
Renal cell Carcinoma (Clear cell)			79%	270,000	54,000
Esophagus	8%		92%	496,000	251,000

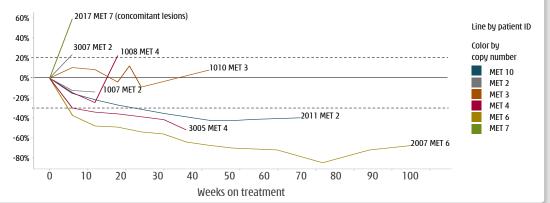
4. AstraZeneca collaboration & 2016 amendment.


- 2011 global licensing agreement: \$20m up front; \$120m development/approvals milestones (\$20m paid at Jun'16); significant commercial milestones; ex-China tiered royalty 9-13%, AZ pay 100% development cost; China 30% royalty, AZ pay 75% development cost (Chi-Med 25%).
- 2016 amendment: Chi-Med pay \$50m towards joint development costs, over 3 years; in return for ex-China royalty +5% points (to 14% to 18%).

Savolitinib - Papillary RCC


Highest ever response rate seen in c-Met+ kidney cancer patients^[1]

Kidney cancer -- Papillary Renal Cell Carcinoma ("PRCC").



- ~50% of PRCC patients harbor MET-driven disease - global unmet medical need.
- Global Phase II complete (n=109), with molecular profiling of all patients - plan to publish results in early 2017;
- End of Phase II meetings with U.S. FDA and EMA completed (prelim. data set); final Phase III design under discussion - likely to be first ever molecularly selected trial in RCC. Plan to start Phase III in early 2017.

R 2 4 1 2 2 7 7

Phase I data gradual & durable response in c-Met+ patients.

Kidney cancer – unmet medical need

No drugs approved in Papillary RCC

Kidney Cancer -- \$4.5 billion market by 2020^[1]

Papillary RCC

(10-15% of RCC) ~ 50,000 new patients per year^[2]

No drugs approved for papillary RCC^[3]

NO RECOMMENDED TREATMENTS TODAY

- NCCN recommends clinical trials.
- Historical drugs approved for RCC (no sub-types): sunitinib, pazopanib or everolimus.
- All known to have modest efficacy.

Non-RCC

10-20% of Kidney cancer ~96,000 new patients per yr.

No approved targeted therapies

366,000 new patients per year

Renal cell carcinoma (RCC)

(80-90% of Kidney cancer) ~270,000 new patients per year

Clear-cell RCC

(70-80% of RCC) ~ 220, 000 new patients per year^[2]

Several drugs approved for clear-cell RCC [3]

FIRST LINE

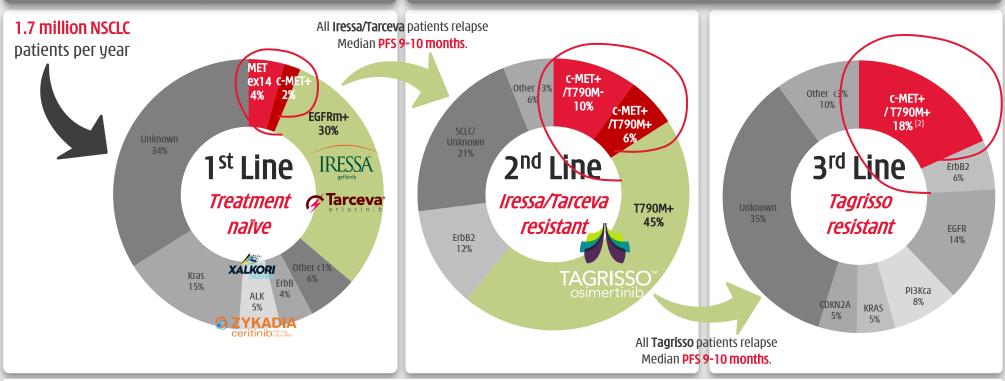
- Sunitinib (VEGFR, multi-kinase SM).
- Pazopanib (VEGFR, multi-kinase SM).
- Sorafenib for selected patients (VEGFR, multikinase SM).
- Temsirolimus* (mTOR).
- Bevacizumab + interferon* (VEGFR, mAb).
- **Axitinib** (VEGFR, multi-kinase SM). *Poor prognosis patients

SECOND LINE

- **Cabozantinib** (VEGFR/MET, multi-kinase SM).
- **Everolimus** (mTOR).
- **Lenvatinib + everolimus** (VEGFR, multi-kinase SM and mTOR).
- Nivolumab (PD-1 mAb).

Savolitinib trials in renal cell carcinoma ("RCC")

Study phase	Patient population	# of patients	Design	Endpoints	Status
Phase II NCT02127710	Papillary RCC	N = 109	Single arm, open label study ■ savolitinib 600mg QD ■ MET status of all patients fully assessed Conducted in UK, Spain, US, Canada	 Objective Response Rate (ORR) Secondary endpoints include duration of response, PFS and OS 	FPD: Q2 14LPCD: Q4 15Est. top-line results: Q1 '17
Phase II NCI PAPMET NCT02761057	Metastatic papillary RCC	N = 180	Randomized, efficacy assessment of multiple MET kinase inhibitors vs. sunitinib: cabozantinib, crizotinib, savolitinib • Conducted in 78 locations in the US Sponsored by the National Cancer Institute (NCI)	 PFS, ORR, OS, safety & tolerability 	FPD: Q2 16Est. completion: Q1 19
Phase Ib CALYPSO NCT02819596	Metastatic papillary RCC	N ~ 40	Part 1: Dose-finding study of durvalumab + savolitinib Part 2: durvalumab + savolitinib combination expansion Conducted in UK Sponsored by Queen Mary University of London	 Efficacy, biomarker analysis, MTD 	FPD: Q2 16Est. Completion: Q4 19
	Metastatic clear cell RCC	N ~ 40	VEGFR TKI refractory patients ■ Savolitinib 600mg QD Conducted in UK Sponsored by Queen Mary University of London	 Efficacy, biomarker analysis, MTD 	FPD: Q2 16Est. Completion: Q4 19
	Metastatic clear cell RCC	N ~ 40	 VEGFR TKI refractory patients Part 1: Dose-finding study of durvalumab + savolitinib Part 2: durvalumab + savolitinib combination expansion Conducted in UK Sponsored by Queen Mary University of London 	 Efficacy, biomarker analysis, MTD 	FPD: Q2 16Est. Completion: Q4 19


Savolitinib

Our biggest opportunity is c-MET-driven non-small cell lung cancer ("NSCLC")

Primary NSCLC

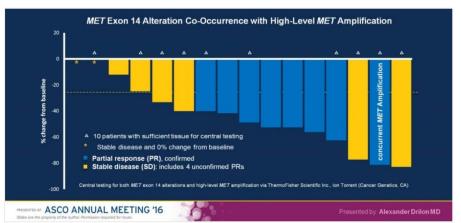
Resistance-driven NSCLC

		Target	Launch	2015 (\$m)	Est. ^[1] Ptnt. Treat
	Iressa	EGFRm+	2003	543	~20,000
	Tarceva	EGFRm+	2004	1,210	~50,000
	Tagrisso	EGFRm+/T790M	2018/19?	—	Ect pook
	Xalcori	ALK/ROS1/MET	2011	488	Est. peak
0	Zykadia	ALK	2015	80	~\$3.0b
<u>8</u>	Total Sales			2,321	חסירל.

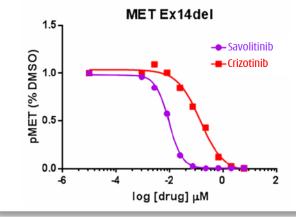
Launch	Q4 2015 (\$m) ^[3]	Q1 2016 (\$m) ^[3]	Q2 2016 (\$m) ^[3]	Est. ^[3] Ptnt. Treat
Dec-15	~20	~50	~90	~3,000
	~20	~50	~90	

[1] general estimate based on mPFS ~9 mo. average cost/cycle ~\$2,500-3,000; [2] based on rocelitinib data published at 2016 ASCO showing 26% c-MET+ in the 65% of patients in which molecular driver was identifiable; [3] AstraZeneca H1 2016 results.

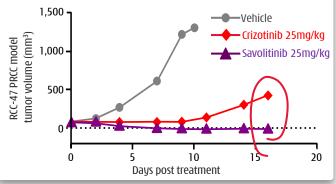
Savolitinib – 1st Line NSCLC


Xalkori® has proven the concept - MET inhibitor in Exon 14 skipping 1L NSCLC

1. Xalkori® is a multi-kinase inhibitor with ALK, ROS1, & MET inhibition – savolitinib is uniquely selective and (10x)more potent against c-Met.


IC ₅₀ (nM)	Savolitinib	Xalkori® (crizotinib)	Savolitinib vs. Xalkori®
EBC1 Viability	2	19	10x
EBC1 pMET	1	39	40x
293T MET (wild type)	7	79	11x
293T MET (Ex14del)	9	140	16x

2. 1st line NSCLC - Xalkori® MET Exon14 skipping - 2016 ASCO - strong efficacy but 1/3rd of responses not durable (4/12)^[1].

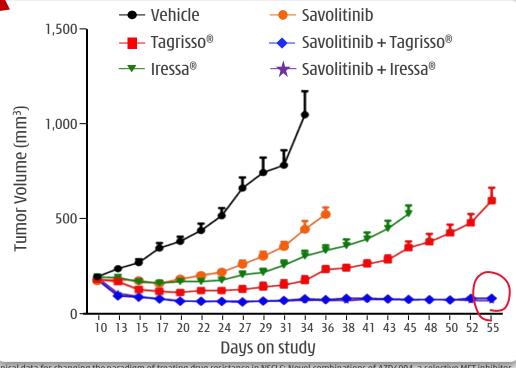


3. Savolitinib versus Xalkori® in MET Ex14del mutant cells^[2] - better target coverage.

4. Durable tumour cell suppression for savolitinib but not for Xalkori^{®[3]}.

^{9 [1]} Drilon A, Abstract 108 Efficacy and safety of crizotinib in patients with advanced MET Exon 14-altered non-small cell lung cancer; [2] Paik, P.K., et al., Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov, 2015. 5(8): p. 842-9.; [3] Schuller AG et al. "Regression in Papillary Renal Cell Carcinoma Patient-Derived Xenograft Models". Clin Cancer Res 2015;21:2811-2819.

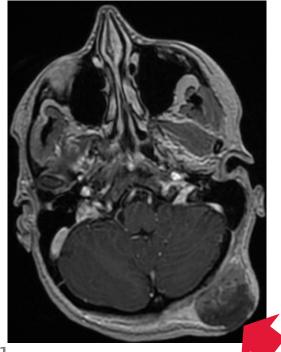
Savolitinib – 2nd Line NSCLC Phase Ib/II


Very strong early signal emerging - Clear competitive edge for savolitinib

1. 2nd Line NSCLC is the fastest & most attractive indication for savolitinib to go after. Also important unmet medical need and potential Breakthrough Therapy area.

2. Potential in EGFR TKI resistant NSCLC:

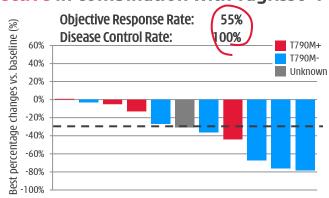
- Must shut down both EGFR & c-Met signaling pathways;
- ✓ Prolonged tumor growth suppression by combining savolitinib with Tagrisso® (osimetinib - EGFR/T790M) or Iressa® (gefitinib/EGFR) in T790M-, C-MET+ patients.


Savolitinib – 2nd Line NSCLC

Clear anti-tumor effect in T790M- / c-Met+ NSCLC patients - Phase IIb underway

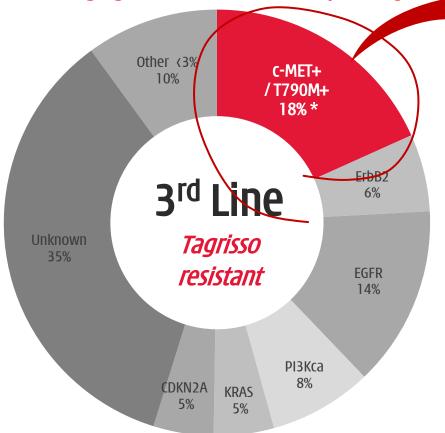
1. 32 yr. old female NSCLC patient w/ c-Met+ & T790M-.

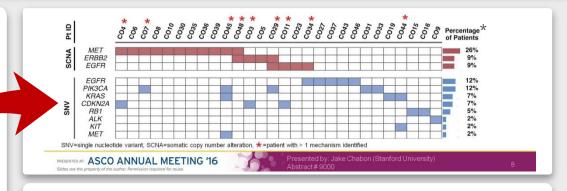
- Rapidly progressing bone & lung metastasis. Major solid tumor.
- Primary progression on previous EGFR TKI (i.e. Tarceva resistant).
- Brief response to platinum doublet.

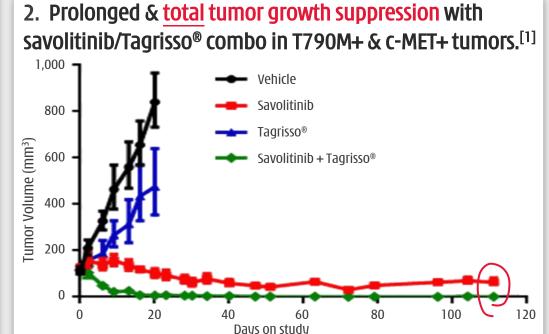

2. visible solid tumor...treated w/ 800mg savolitinib & 80mg Tagrisso® daily.

3. TATTON study – savolitinib is safe & effective in combination with Tagrisso®.

Number of events, n	600 (n =	_	800mg (n = 6)		
Adverse Event occurring in over three instances at any dose	Any Gr.	Gr.≥3	Any Gr.	Gr.≥3	
Vomiting	7	0	3	0	
Nausea	3	0	6	1	
Rash	4	0	3	0	
Pyrexia	3	0	3	0	
White blood cell count decreased	4	0	1	1	
Decreased appetite	1	0	3	0	

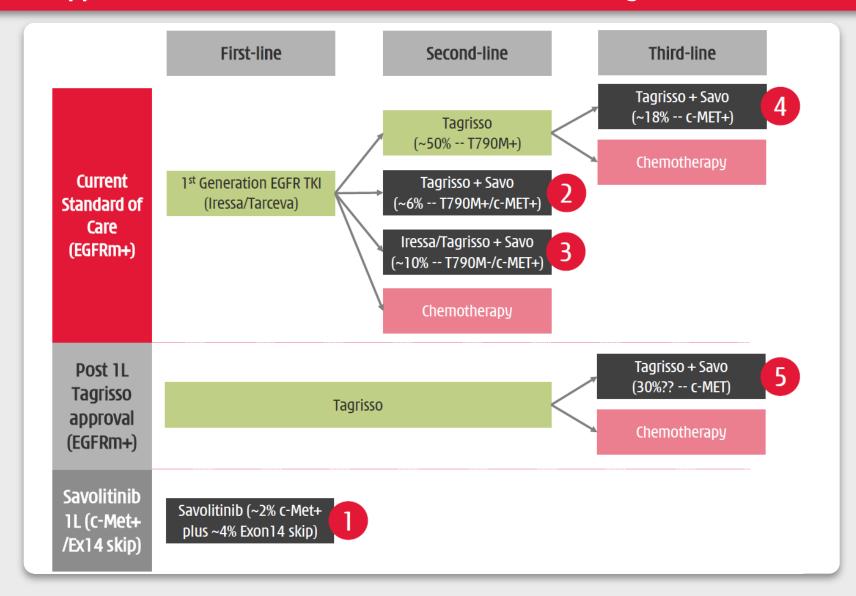

Savolitinib – 3rd Line NSCLC




Powerful efficacy in T790M+ & c-Met+, unmet medical need starting to emerge

1. 3rd Line NSCLC is a new emerging patient population since Tagrisso approved (Dec 2015).

MET emerging as the main resistance pathway.



Savolitinib - NSCLC

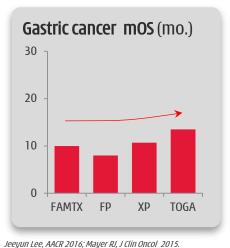
Five clear opportunities for savolitinib in the NSCLC treatment algorithm

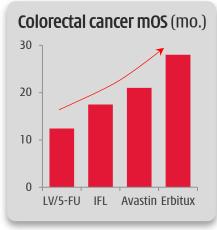
Savolitinib trials in NSCLC

Study phase	Patient population	# of patients	Design	Endpoints	Status
Phase I/II TATTON NCT02143466	Advanced EGFRM NSCLC TKI failure		 Phase Ib - 3 dose-finding arms Combination Tagrisso + savolitinib (AZD6094, MET inhibitor) 	Phase IbSafety, tolerability, PKPreliminary anti-tumor activity	FPD: Q3 2014Dose escalation completed
NC102143400		Phase II expansion N ~ 25	Phase IIa/IIb open label combination ● Combination Tagrisso 80mg + savolitinib 600mg	Phase IIa/IIb Objective Response Rate (ORR) Duration of response, PFS and OS	• FPD: Q3 2015 • LPCD: Q4 2016
	Advanced EGFRM NSCLC TKI failure	N ~ 20	Phase IIa - Tagrisso + savolitinib ■ T790M mutation positive patients that failed on Tagrisso or other T790M TKI ■ MET-driven resistance patients Global trial	 Phase II ORR Secondary endpoints include duration of response, PFS and OS 	FPD: Q1 2016LPCD: 2017
Phase I/II NCT02374645	Advanced EGFRM NSCLC TKI failure		Phase IbOpen label, dose finding studyCombination Iressa + savolitinib	Phase Ib ■ Safety and tolerability	Phase Ib • FPD: Q1 15 • LPCD: Q2 15
			 Phase IIb expansions Combination Iressa 250mg + savolitinib 600mg Screening for MET gene amplified patients Conducted in China 	 Phase II expansions ORR Secondary endpoints include duration of response, PFS and OS 	Phase II expansions • FPD: Q3 15 • LPCD: Q4 16
Phase I/II NCT01985555	3 rd line Advanced EGFRwt NSCLC	Phase Ib N = 22	Phase Ib - savolitinib monotherapy ● MET IHC or FISH positive patients	Safety, tolerability, PKPreliminary anti-tumor activity	FPD: Q4 14LPCD: Q4 15Completed (not yet publ.)
	Advanced EGFRwt NSCLC	Phase IIa N = 10	Phase IIa – savolitinib monotherapy (all lines) ● Exon 14 deletion mutation patients Conducted in China	Safety, tolerability, PKPreliminary anti-tumor activity	FPD: Q3 16LPCD: Q4 17

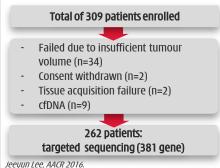
24

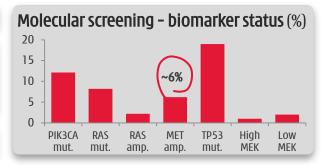
Savolitinib (AZD6094) - Gastric cancer

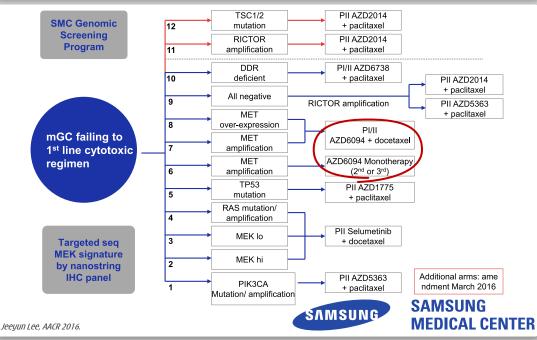

A major problem in east Asian countries – Japan, South Korea and China


1. Gastric (stomach) cancer is the 5th most common cancer globally - 723,000 deaths/year.

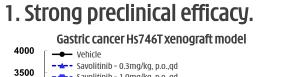
	Est. Age Standardised Rates (cases/100,000)	New cases ('000)	Deaths ('000)	5-year Prevalence ('000)
World	17.0	952	723	1,538
South Korea	41.8	22	17	32
Japan	29.9	38	29	56
China	22.7	405	325	594
EU-28	9.0	82	58	119
USA	6.8	21	12	32

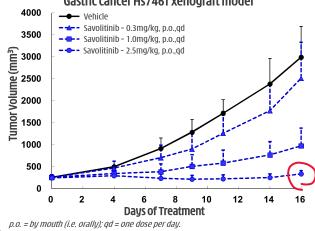

Jeeyun Lee, AACCR 2016; IARC, WHO 2012; Jung KW, Cancer Research Treatment 2013; World Cancer Research Fund International.

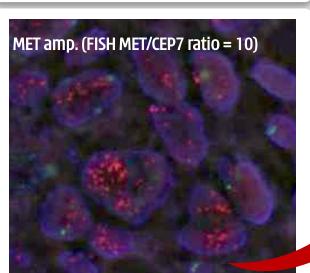

2. Little progress in gastric cancer in improving overall survival ("OS") in first-line palliative setting.



3. VIKTORY – umbrella trial in gastric cancer *(South Korea).*

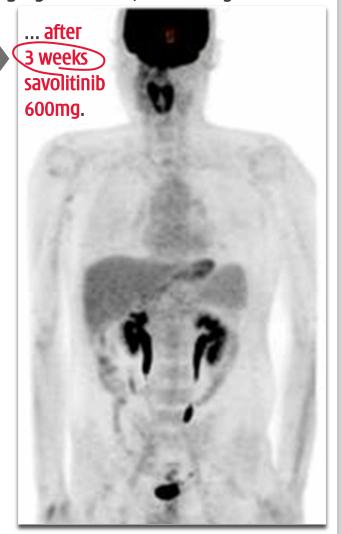



Savolitinib - Gastric cancer



VIKTORY trial – very promising early clinical results in c-Met amplified patient

Jeeyun Lee, AACR 2016.



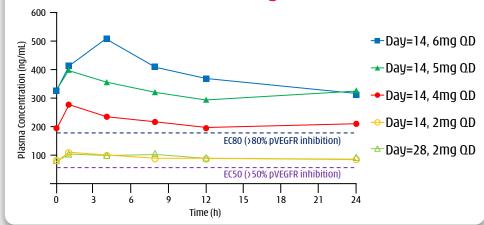
2. VIKTORY trial - 34-year old male; surgery ruled-out; failed 4-cycles XELOX.

) 6 Jeeyun Lee, AACR 2016.

Savolitinib trials in gastric cancer

Study phase	Patient population	# of patients	Design	Endpoints	Status		
Phase I/II	Cancer Advanced Gastric N = 24 Cancer •		Savolitinib monotherapyMET gene amplified patients (All lines)	Safety, tolerability, PKEfficacy - PFS	FPD: Q4 14LPCD:Q4 17		
NCT01985555			Savolitinib monotherapyThird-line MET overexpression patientsConducted in China	Safety, tolerability, PKEfficacy - PFS	FPD: Q4 14LPCD: Q4 15		
Phase Ib	Advanced Gastric Adenocarcinoma	N = 4	 Dose finding - combination docetaxel + savolitinib Second-line MET gene amplified patients 	 Safety, tolerability, PK 	FPD: Q4 14Completed (not yet publ.)		
NCT02252913	Advanced Gastric Adenocarcinoma	N = 4	 Dose finding - combination docetaxel + savolitinib Second-line MET overexpression patients Conducted in China 	 Safety, tolerability, PK 	FPD: Q4 14Completed (not yet publ.)		
Phase Ib/II VIKTORY	Advanced Gastric Adenocarcinoma	N = 25	Combination docetaxel + savolitinibSecond-line MET gene amplified patients	Safety, tolerability, PKEfficacy - ORR, PFS, DoR, OS	FPD: Q1 15Est. completion: Q4 18		
	Advanced Gastric Adenocarcinoma	N = 25	Combination docetaxel + savolitinibSecond-line MET overexpression patients	Safety, tolerability, PKEfficacy - ORR, PFS, DoR, OS	FPD: Q3 15Est. completion: Q1 18		
NCT02447380 NCT02449551	Advanced Gastric Adenocarcinoma	N = 20	 Savolitinib monotherapy Third-line MET gene amplified patients Conducted in South Korea Sponsored by Samsung Medical Center 	Safety, tolerability, PKEfficacy - ORR, PFS, DoR, OS	FPD: Q1 15Est. completion: Q1 18		

Fruquintinib – 24hr full target coverage



The most selective VEGFR inhibitor in clinical trials globally^[1]

1. Substantial progress made in 2016 – fruquintinib approaching China NDA submission mid-2017.

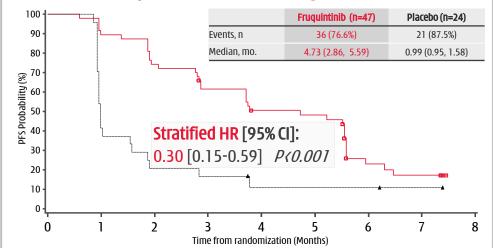
- ✓ Validation of R&D approach designed to only inhibit VEGFR1,2,3, facilitating **full target coverage & combinations**.
- ✓ Pivotal Phase III trial in 3L CRC fully enrollment completed in H1 2016.
- ✓ **Pivotal Ph. III** trial in **3L NSCLC well underway** since Q4 2015 initiation.
- ✓ Ph.Ib Taxol® combo in 2L gastric cancer dose finding completed in H1 2016, now in Phase Ib expansion.
- ✓ Ph.lb Iressa® combo trial in 1L EGFRm+ NSCLC planning for H1 2017.
- ✓ China GMP **production facility operational** to support launch.

2. Only inhibits VEGFR – limits off-target toxicity & allows for full & sustained target inhibition.

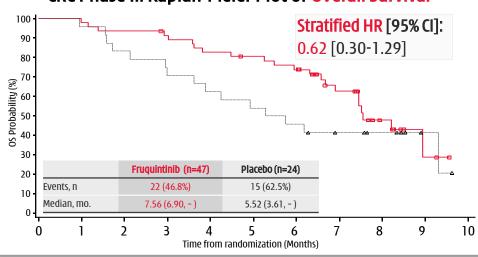
3. Selectivity and potency superior to competitor drugs.

	Sutent® (sunitinib)	Nexavar® (sorafenib)	Stivarga® (regorafenib)	Tivozanib	Fruquintinib
Kinase profile	VEGFR1,2,3, PDGFRβ, FLT3, CSF-1R, c-Kit, Ret	RAF, VEGFR2, PDGFRβ, Flt3, c-Kit, FGFR1	VEGFR1,2,3, Raf, Ret, PDGFR, c-Kit	VEGFR1,2,3, BRK, PDGFRα, PDGFRβ, c-Kit, Tie2, EphB2	VEGFR1,2,3
AUC at ED50/ED60 in mouse (ng/mL*hr)	2,058	25,473	na	1,640	898
MTD in human (mg/day) AUC, 0~24h at Steady state MTD (ng/mL*hr)	50, qd	400, bid	160, qd	1.5, qd	4, qd; 6, 3wk/1wk
	592	47,780 x2 (D28)	58,270 (D21)	1,180 (D28)	5,000~6,000 (D28)
Efficacy in Phase I	22 patients PR: 4 (18%), DCR: 27%	45 patients (≥100 mg bid) PR: 1 (2%), DCR: 58%	53 patients PR: 3 (6%), DCR: 66%	37 evaluable patients PR: 1 (3%) DCR: 51%	34 evaluable patients PR: 13 (38%), DCR: 82%

Fruquintinib – positive CRC & NSCLC Phase IIs


Phase II studies led to Phase III initiation & \$41.6m from Lilly since Jan 2015

- Colorectal cancer ("CRC") Phase II proof-of-concept ("PoC").
 - ✓ 71 3rd line or above pts. **enrolled in ~4 months** (Apr-Aug '14).
 - ✓ **Clearly met** primary endpoint: 70% reduction in risk of progression. Success milestone + reimbursements in O2 '15.
 - ✓ Well tolerated; safety profile consistent with VEGFR inhibition.
 - ★ Hypertension & HFS are on-target VEGFR AEs.
 - ★ Weak patients 73% of patients 4th line or above.


Patients, %	Fruquintinib (n=47)	Placebo (n=24)
All AEs, any grade	47 (100%)	20 (83.3%)
All AEs, grade ≥3	31 (66.0%)	6 (25.0%)
Hypertension, grade ≥3	11 (23.7%)	0
Hand-foot syndrome ("HFS"), grade ≥3	7 (14.9%)	0
All other AEs, grade ≥3 (each)	≤2 (≤4.3%)	≤1 (≤4.2%)
Leading to dose interruption	14 (29.8%)	4 (16.7%)
Leading to dose reduction	13 (27.7%)	0
Leading to treatment discontinuation	6 (12.8%)	3 (12.5%)

- Non-small cell lung cancer ("NSCLC") Phase II PoC.
 - ✓ 91 3^{rd} line only pts. enrolled in ~9 months (Jun'14-Mar'15).
 - Clearly met primary endpoint of reduction in risk of progression. Success milestone from Lilly in Q4 2015.
 - ✓ **AEs consistent** with the known safety profile.
 - ✓ Publish full study details at scientific conference late 2016.

CRC Phase II: Kaplan-Meier Plot of Progression Free Survival

CRC Phase II: Kaplan-Meier Plot of Overall Survival

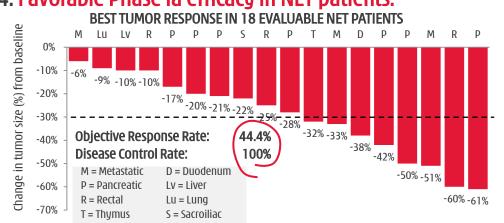
Sulfatinib - Phase II & III trials

CHI-

VEGFR/FGFR1 - Highest ORR reported in neuroendocrine tumors ("NET")

1. Demonstrated compound superiority.

- ✓ Unique kinase profile: selectively targets VEGFR & FGFR1 to inhibit tumor angiogenesis & growth.
- ✓ Pharmacokinetic analysis in Phase Ia demonstrated consistent and sustained target inhibition over 24hrs.
- ✓ Broad efficacy across all NET subtypes versus narrower focus of all current approved therapeutics (VEGFR & mTOR TKIs; and somatostatin analogues).
- ✓ Quantum of ORR & PFS efficacy also appears superior.


3. Broad clinical development program.

- Phase II 81 NET pts ongoing; PFS not yet reached appear in line with expectations plan to publish data Q1 2017.
- Two pivotal Phase III registration trials enrolling initiated Q4 2015/Q1 2016; results expected 2018; (300mg daily).
 - ★ Phase III non-pancreatic NET patients (named SANET-ep), &
 - ★ Phase III pancreatic NET (named SANET-p).
- U.S. Phase I dose finding underway initiated Q4 2015 and expecting completion in H2 2016; currently in 200mg cohort.
- Phase II trial in thyroid cancer underway initiated in Q1 2016.
- Plan to start biliary tract carcinoma ("BTC") Phase II late 2016.

2. High NET prevalence & no broadly effective drugs.^[4]

		UNITED STATES				
	Incidence (new cases /year)	Survival (% patients - 5 years)	Prevalence (Est. patients)	Prevalence (Est. % of all NET)		
Stomach	1,140	54%	8,432	6.0%		
Duodenum	722	56%	5,341	3.8%		
Jejunum/Ileum	2,545	63%	18,832	13.4%		
Cecum	608	62%	4,497	3.2%		
Colon	760	48%	5,622	4.0%		
Rectum	3,267	59%	24,173	17.2%		
Pancreas	1,215	56%	8,995	6.4%		
Liver	152	32%	1,124	0.8%		
Appendix	570	64%	4,216	3.0%		
Total GI NET	10,977	58%	81,232	57.8%		
Lung	5,128	61%	37,946	27.0%		
Other	2,887	63%	21,362	15.2%		
All NET	18,992	60%	140,540	100.0%		

4. Favorable Phase Ia efficacy in NET patients.

^{3 [1]} Objective Response Rate/ORR = percent of patients with >30% tumor diameter shrinkage (Note: Intent to Treat ITT population = 21; patients evaluable for efficacy = 18; 3 patients withdrawn/lost to follow-up/AE); [2] Disease Control Rate/DCR = percent of patients with tumor diameter growth <20%; [3] CTA = Clinical Trial Application (for Phase II/III in China); [4] Frost & Sullivan.

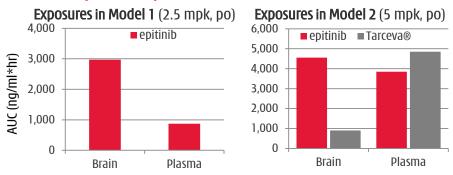
Sulfatinib – favorable competitive landscape

Convenience & broad efficacy across all NET

	So	omatostatin Based Therapi	es	Kinase Inhibitor Therapies				
	Sandostatin® (octreotide)	Somatuline Depot® (lanreotide)	Lutathera® (¹⁷⁷ Lu-Dotatate) ^[3]	Afinitor® (everolimus)	Sutent® (sunitinib)	Sulfatinib		
Mechanism of Action	Somatostatin analogue	Somatostatin analogue	Somatostatin receptor targeting radiotherapy	mTOR inhibition	Inhibits multiple receptor tyrosine kinases	VEGFR/FGFR1 inhibition		
Mode of administration	Deep subcutaneous or intravenous injection	Deep subcutaneous injection	subcutaneous injection or intravenous injection	Oral tablet	Oral capsules	Oral tablet		
Shelf-life	3 years	2 years	3 days (½ life)	3 years	3 years			
Primary Tumor Site								
Pancreas	*	*	×	\checkmark	\checkmark	\checkmark		
Mid-gut	\checkmark	√ (Ki67<10%)	\checkmark	\checkmark	×	\checkmark		
Entire GI tract	×	\checkmark	×	\checkmark	×	\checkmark		
Lung	×	×	×	\checkmark	×	\checkmark		
Other	×	×	×	*	×	\checkmark		
	Sandostatin® / Placebo	Somatuline Depot® / Placebo	Lutathera ^[3] / Sandostatin LAR 30mg	Afinitor® / Placebo	Sutent® / Placebo	Sulfatinib		
Median PFS (months)	14.3/6.0	NR / 18.0	NR / 8.4	11.0 / 4.6 (pancreatic) 11.0 / 3.9 (lung & GI)	11.4 / 5.5	18.3		
Hazard Ratio	0.34	0.47	0.21	0.35 (pancreatic) 0.48 (lung & GI)	0.42			
(p-value)	0.000072	⟨0.001	<i><0.0001</i>	<i><0.001 (pancreatic)</i> <i><0.001</i> (lung & GI)	<i><0.001</i>			
Objective Response Rate ^[1]	2% / 2%	NR	18% / 3%	5% / 2% (pancreatic) 2% /1% (lung & GI)	9% / 0%	38%		
Disease Control Rate ^[2]	69% / 40%	NR	95% / 76%	73% / 51% (pancreatic) 81% / 64% (lung & GI)	72% / 60%	86%		

^[1] ORR = percent of patients with >30% tumor diameter shrinkage (Note: Intent to Treat ITT population = 21; patients evaluable for efficacy = 18; 3 patients with drawn/lost to follow-up/AE); [2] DCR = percent of patients with tumor diameter growth <20%; [3] FDA action date is December 28, 2016.

Epitinib – BBB penetrating TKI entering Phase III



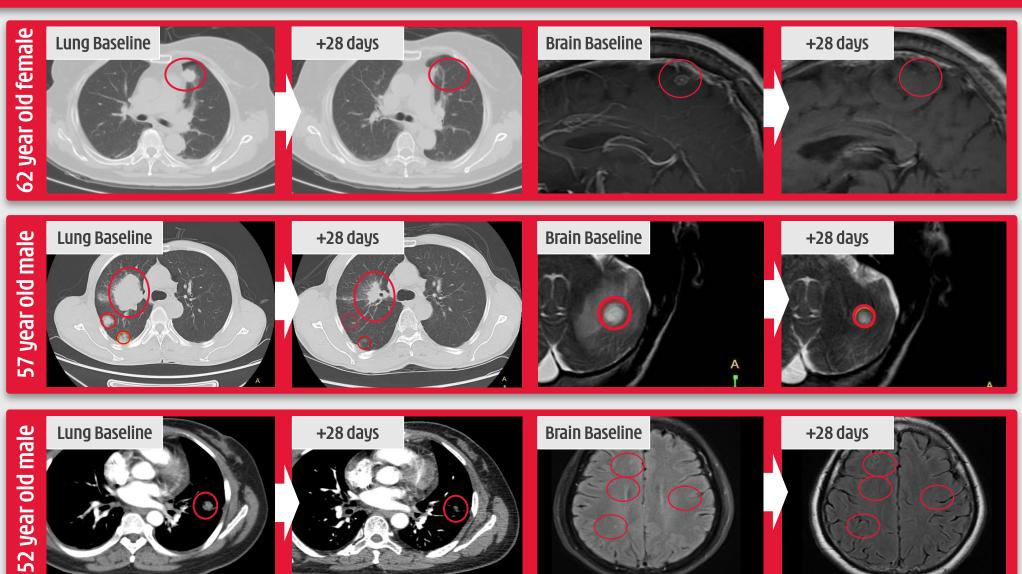
Early efficacy data in NSCLC w/ brain metastasis

1. Major need for EGFR TKI which penetrates BBB.

 Current EGFR TKIs (Tarceva® & Iressa®) have low blood brain barrier ("BBB") penetration. If NSCLC metastasizes to brain (eventually ~50% of patients^[1]) current TKIs less effective.

2. Clear superior exposure in brain vs. Tarceva®.

3. Rapidly moving into late stage clinical trials.


- Phase III in NSCLC with brain metastasis to start:
 - Completed 30 pt. enrolment in Ph Ib − clear efficacy in both lung & brain.
 - **7** Publish results in late 2016 at a major cancer conference.
 - → China FDA Phase II/III clinical trial cleared in July initiating Phase III in H2 2016.
- Glioblastoma (primary brain tumors):
 - Phase II planning underway, initiating in H2 2016.

Phase Ib monotherapy in EGFRm+ NSCLC - efficacy in lung & brain **Lung Baseline** +36 days **Brain Baseline** +36 days MR201 92.1mm

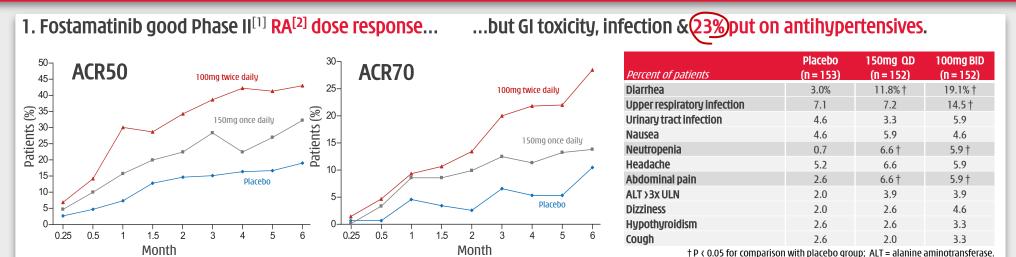
Epitinib -<u>early</u> NSCLC Phase Ib efficacy

CHI-

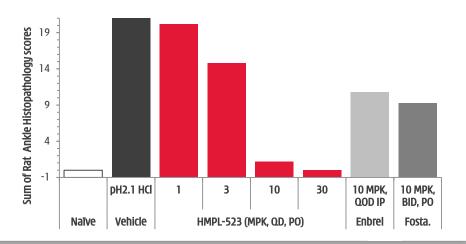
Especially in patients with brain metastases at initial diagnosis

7 shots at pivotal success - 1st read-out H12017

4 pivotal studies enrolling & 3 new pivotal studies likely to initiate H1 2017


	4 pivotai studies enifoling & 5 new pivotai studies likely to illitiate HT 2017								
						Breakthrough Therapy ("BTT") potential	Est.	Pivotal Read-out (if not BTT)	
CAMO		Papillary renal cell carcinoma (c-Met-driven)	Pivotal Phase III	U.S., EU5, Japan	Initiating H1 2 <u>017</u>	Depends on strength of Ph.II data set (H1 2017)		H1 2019	
ŀ	SAVO	NSCLC -2L Tagrisso combo (T790M+/- & c-Met+)	Pivotal Phase II/III	U.S., EU5, Japan	Decision based on Ph.IIb data (H1 2017)	Depends on strength of Ph.IIb data set (H1 2017)		H2 2019	
	FRUQ	3L (or above) Colorectal cancer	Pivotal Phase III	China	Enrolment complete			H1 2017	
		3L Non-small cell lung cancer ("NSCLC")	Pivotal Phase III	China	Enrolling			H2 2017	
ı	SULF	Pancreatic neuroendocrine tumors	Pivotal Phase III	China	Enrolling			H2 2018	
	SULF	Extra-pancreatic Piv	Pivotal Phase III	China	Enrolling			H2 2018	
	EPIT	1L EGFR-mutant NSCLC with brain metastasis	Pivotal Phase II/III	China	Likely to initiate H1 2 <u>017</u>			H1 2019	

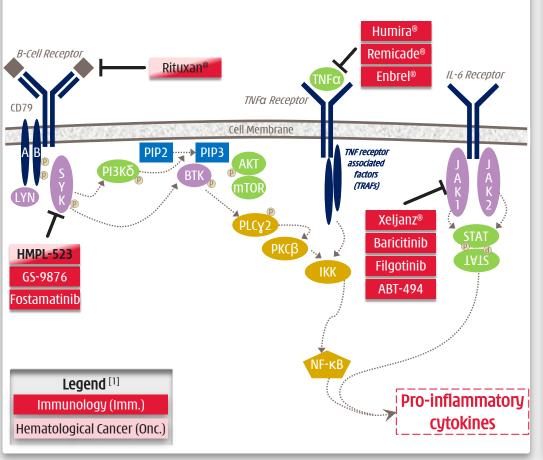
HMPL-523 – superiority vs. fostamatinib



Superior selectivity, better target coverage & efficacy

2. HMPL-523 – far superior selectivity to fostamatinib..... and very strong efficacy in preclinical RA models.

Selectivity	HMPL-523 IC ₅₀ (nM)	fostamatinib IC ₅₀ (nM)
Syk enzyme	25 ± 5 (n=10)*	54 ± 16 (n=10)*
JAK 1,2,3 enzyme	>300, >300, >300*	120, 30, 480*
FGFR 1,2,3	>3,000, >3,000, >3,000	89, 22, 32*
FLT3 enzyme	63*	9*
LYN enzyme	921*	160*
Ret enzyme	>3,000*	5**
KDR enzyme	390 ± 38 (n=3)*	61 ± 2 (n=3)*
KDR cell	5,501 ± 1,607 (n=3)*	422 ± 126 (n=3)*



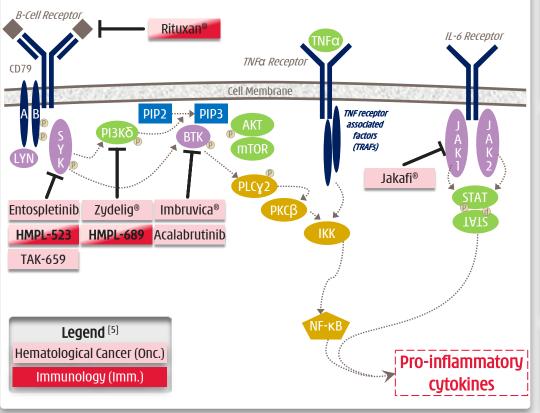
HMPL-523 - immunology potential

Potential first-in-class Syk inhibitor in immunology – Phase II in planning

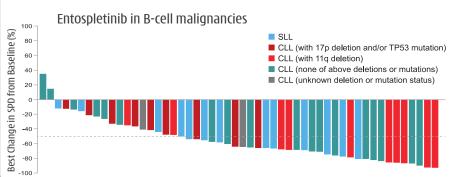
1. Syk, the most upstream B-cell pathway kinase target is clinically validated in rheumatoid arthritis ("RA"), but currently Chi-Med & Gilead are the only companies pursuing.

2. RA expected to be a \$45 billion market in 2020 with B-cell pathway; anti-TNF; & JAK the main focus.

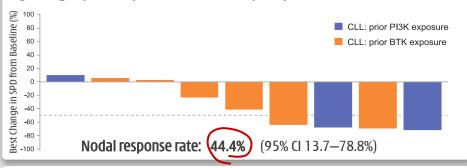
(Methotrexate-IR: placebo adjusted)	ACR20	ACR50	ACR70	2014 Sales (\$billion) ^[2]
B-Cell receptor mAbs				
Rituxan® (24-Week)	33%	21%	11%	1.4
Anti-TNFα/NF-κB mAbs				
Humira® (24-Week)	33%	29%	18%	12.5
Remicade® (24-Week)	30%	22%	8%	9.2
Enbrel® (24-Week)	44%	36%	15%	8.5
JAK Inhibitors Small molecules				
Xeljanz® (24-Week)	25%	23%	13%	0.3
Xeljanz® (12-Week)	28%	21%	8%	0.5
baricitinib 4mg QD (12-Week)	30%	28%	14%	n/a
filgotinib 100mg BID (12-Week)	35%	40%	23%	n/a
ABT-494 24mg QD (12-Week)	32%	24%	18%	n/a
Syk Inhibitor Small molecule				
fostamatinib 100mg BID (24-Week)	32%	24%	18%	n/a


- 3. Substantial market potential remains in RA.
- mAbs intravenous administration and shut down immune system for 4-6 weeks - high infection / lymphoma risks.
- First-in-class JAKs in RA limited by compound-related tox.
- Syk inhibition shown to benefit patients but fostamatinib failed due to major off-target toxicity.

HMPL-523 - hematological malignancies



Syk exciting target emerging in oncology – Lymphoma Phase I ongoing

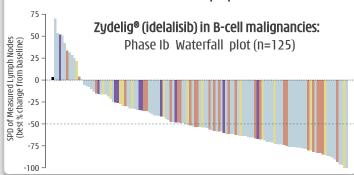

- 1. The B-cell signaling is critical in hematological cancer with three breakthrough therapies recently approved.
- Sales in 2015 of Imbruvica® were \$1.3 billion; Zydelig® \$0.1 billion; Jakafi® \$0.6 billion; & Rituxan® \$5.9 billion^[2].

2. Entospletinib ASH^[1] Dec 2015 data - 65%Nodal Response Rate in CLL & SLL^[3].

3. Entospletinib potential for overcoming resistance to Zydelig® (PI3Kδ) & Imbruvica® (BTK).

- 4. Entospletinib not a perfect compound.
- Poor solubility/oral absorption & high variation in drug exposure.
- Some CYP^[4] inhibition & increased risk of drug-drug interaction.

Sharman et al, "Phase 2 Trial of Entospletinib, a Selective Syk Inhibitor, in Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma" and "Clinical Activity of Entospletinib, a Selective Syk Inhibitor, in Patients With Chronic Lymphocytic Leukemia Previously Treated With an Inhibitor of B-Cell Receptor Pathway Signaling", ASH Meeting 2015.


HMPL-689

Designed to be a best-in-class inhibitor of PI3K δ - Phase I started in April

1. PI3Kδ now a proven target.

- PI3Kδ activation associated with allergy, inflammation & oncology.
- Evidence that PI3Kδ inhibitors effective in ibrutinib-resistant mutant population.

2. PI3Kδ inhibitors being developed in a very broad range of indications.

Compound		Indication	Status	Issue
Zydelig®	Ciload	Chronic lymphocytic leukaemia, non-Hodgkin's lymphoma	Registered	High incidence of liver
(idelalisib)	Gilead Sciences	Hodgkin's lymphoma	Phase II Trial	toxicity seen with
ЫЗКΣ	50.0	Waldenstrom's hypergammaglobulinaemia	Preclinical	idelalisib (150mg bid)
AMG-319 PI3Kδ	Amgen	B-cell lymphoma, non-Hodgkin's lymphoma, T-cell lymphoma, chronic lymphocytic leukaemia	Phase I Trial	
duvelisib ^[1]		B-cell lymphoma, non-Hodgkin's lymphoma, chronic lymphocytic leukaemia	Phase III Trial	Need to spare PI3Ky serious infection seen
(IPI-145)	AbbVie / Infinity	Asthma, rheumatoid arthritis	Phase II Trial	with duvelisib due to
ΡΙ3Κγ/δ	illillity	COPD, SLE, psoriasis, MS transplant rejection, allergy, acute lymphocytic leukaemia, T-cell lymphoma	Phase I Trial	strong immune suppression

3. HMPL-689 -- Important asset.

Designed to improve on existing PI3K δ inhibitors:

- Improved isoform selectivity (sparing PI3Kγ).
- Improved potency at whole blood level (>5x more potent than idelalisib) to cut compound related toxicity.
- Improved PK properties particularly efflux and drug/drug interaction due to CYP inhibition / induction, critical for combo therapy.

4. HMPL-689 more potent and more selective than idelalisib & duvelisib.

Enzyme IC ₅₀ (nM)	HMPL-689	Zydelig®	duvelisib
РІЗКδ	0.8 (n = 3)	2	1
PI3Kγ (fold vs. PI3Kδ)	114 (142x)	104 (52x)	2 (<u>2X)</u>
PI3Kα (fold vs. PI3Kδ)	>1,000 (>1,250x)	866 (433x)	143 (143x)
PI3Kδ human <u>whole blood</u> CD63+	3	14	15
PI3Kβ (fold vs. PI3Kδ)	87 (109x)	293 (147x)	8 (8 <u>X)</u>

Theliatinib

CHI-

Strong affinity to wild-type EGFR kinase

1. Major unmet medical need for wild-type EGFR activation tumors.

- EGFR activation affects multiple tumor types with many remaining unaddressed.
- Current EGFR tyrosine kinase inhibitor are less effective at treating solid tumors with wild-type EGFR activation.
- There are few effective treatments for head & neck, esophageal and non-small cell lung cancers.

 TKIS approved:

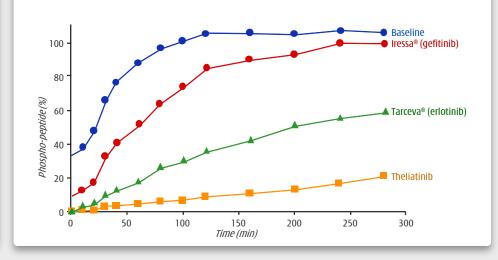
 TKIS approved:

 TKIS approved:

 TKIS approved:

 TKIS approved:

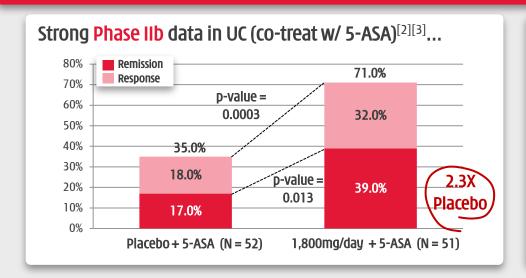
 TKIS approved:

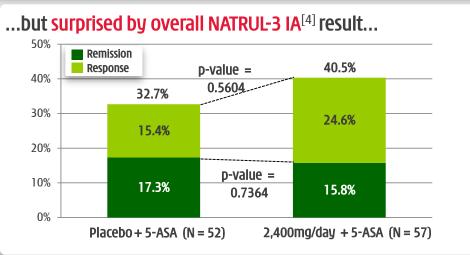

Tumor Types	Wild-type: Gene Amplification	Wild-type: Over Expression	Mutations
Lung (Non-small cell)	29%	62%	10-30%
Esophagus	8-30%	30-90%	12% (esophageal adenocarcinoma)
Stomach	29%	44-52%	₹5%
Glioblastoma	36-51%	54-66%	27-54% (EGFR variant III)
Colorectal	4.5%	53%	8%
Head and neck	10-30%	66-84%	42% (EGFR variant III)
Source: Frost & Sullivan.		MAbs a	pproved: Erbitux®, Vectibix®

2. Theliatinib is a potent and highly selective oral EGFR inhibitor engineered to have significantly greater binding affinity to wild-type EGFR proteins.

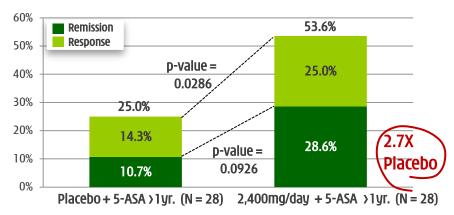
 designed to have strong binding affinity to the wild-type EGFR kinase - sustained target occupancy or "slow-off" characteristic.

3. **Superior anti-tumor activity** of Theliatinib in preclinical studies in tumors with wild-type EGFR.

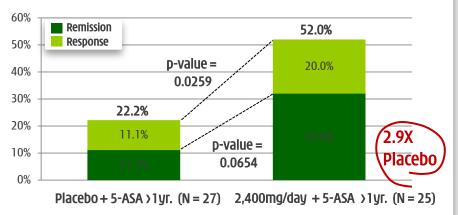

- 5- to 10-fold more potent than Tarceva®.
- Sustained target occupancy.



HMPL-004 – Heavy pill burden/compliance issues



Reformulation - HM004-6599 (>70% active) vs. HMPL-004 (~15% active)



...but HMPL-004 works well in 5-ASA failure patients...

...particularly if difficult to treat patients stratified.

^[1] Post-hoc analysis of IA: sub-group base sizes in these analyses are small and should be viewed for general indication purposes only; [2] UC = Ulcerative colitis;

A powerful Rx Commercial Platform in China

Chi-Med management run all day-to-day operations

- National Coverage:
 - ~300 cities & towns.
 - ~16,900 hospitals.
 - ~85,000 doctors.
- New team of 132 CNS reps built since 2015.

~2,000 Rx Sales People

(6%)

427 (21%)

NORTH

Pop'n: 320m (23%)

CV Medical Reps: CNS Medical Reps: HSP Sales staff: 401 (22%) 26 (20%) 0 (0%)

WEST

Pop'n: 100m (7%)

CV Medical Reps: 67 (4%) CNS Medical Reps: 5 (4%) HSP Sales staff: 0 (0%) 72 (4%)

128 865 (43%)

(26%)

EAST

Pop'n: 393m (28%)

CV Medical Reps: 777 (42%) CNS Medical Reps: 58 (43%) HSP Sales staff: 30 (100%)

SOUTHWEST

Pop'n: 190m (14%)

CV Medical Reps: 115 (6%) CNS Medical Reps: 13 (10%) HSP Sales staff: 0 (0%) CENTRAL-SOUTH

Pop'n: 383m (28%)

CV Medical Reps: 487 (26%) CNS Medical Reps: 30 (23%) HSP Sales staff: 0 (0%)

Chi-Med's Commercial Platform in China

Long track record of commercial success - important source of cash

0/0/

2 National household name brands

Focus on largest disease categories

Most common disease diagnosed/treated in rural hospitals[1]:

COId/Fiu:	86%
Cardiovascular:	78%
Diabetes:	46%
GI:	45%

Major commercial & production scale

~2,000 Rx & ~1,200 OTC sales people in about 300^[2] cities & towns in China.

Drugs in ~16,900 hospitals detailing ~85,000 doctors.

Produced ~4.0 billion doses of medicine in 2015.

Leadership market shares

Market leader in the subcategories/markets in which we compete^[3]:

SXBX pill: ^{[4][5]}	~12%
Rx Cardiovascular TCM	
Banlangen: ^[6]	~51%
OTC Anti-viral /flu TCM	
FFDS tablet:[7]	~32%

OTC Angina TCM

JVs with 3 leading China Pharmas

Commercial Platform Performance - 2003-H1 2016^{[8][9]}

Cold/Flue

					IF	RS							US GAAP			H1 15 - H1 16
(US\$ millions)	03	04	05	06	07	08	09	10	11	12	13	14	15	H1 15	H1 16	Growth
Sales	21.9	27.9	65.1	101.4	119.0	155.8	197.0	236.4	278.6	360.7	402.3	465.4	518.9	285.4	331.9	16%
Prescription Drugs	17.2	21.8	23.3	23.2	28.1	39.5	54.4	71.2	92.4	116.5	138.2	204.9	286.6	149.3	194.5	30%
Consumer Health	4.7	6.1	41.8	78.2	90.9	116.3	142.6	165.2	186.2	244.2	264.1	260.5	232.3	136.0	137.4	1%
Total Sales Growth	па	27%	133%	56%	17%	31%	26%	20%	18%	29%		16%	11%		16%	
Net Profit/(Loss) After Tax	(10.7)	(3.6)	2.2	6.7	11.2	14.7	21.5	27.9	30.1	33.1	39.7	48.8	54.1	43.4	47.9	10%
Prescription Drugs	(0.4)	1.3	1.9	1.3	1.9	2.8	6.0	11.9	14.2	17.7	22.4	26.5	31.9	23.8	30.6	29%
Consumer Health	(10.3)	(4.9)	0.3	5.4	9.3	11.9	15.5	16.0	15.9	15.4	17.2	22.3	22.2	19.6	17.3	-12%
% Margin	-48.9%	-12.9%	3.4%	6.6%	9.4%	9.4%	10.9%	11.8%	10.8%	9.2%	9.9%	10.5%	10.4%	15.2%	14.4%	
Net Profit/(loss) Attrib. to Chi-Med	(5.7)	(3.7)	(0.5)	1.2	4.5[10]	5.9[10]	9.3[10]	12.6[10]	13.6[10]	14.6[10]	18.2[10]	22.8[10]	25.2	19.8	22.1	12%
Prescription Drugs	(0.2)	0.6	1.0	0.7	0.9	1.4	3.0	5.9	7.1	8.8	11.2	13.2	15.9	11.9	15.3	29%
Consumer Health	(5.5)	(4.3)	(1.5)	0.5	3.6	4.5	6.3	6.7	6.5	5.8	7.0	9.6	9.3	7.9	6.8	-14%
Net (loss)/income Attrib. to Chi-Med Growth	na	-35%	-86%	340%	275%	31%	58%	35%	8%	7%		26%	10%		12%	

Deep portfolio of household name drugs

Total of over 200 products - Top 7 represent 67% of sales [1] and 92% of gross profit [1]

,				$\overline{}$			
Main Products SALES [2]	2011	2012	2013	2014	2015	H1 2015	H1 2016
SXBX pill Coronary artery disease (Rx) 12% National market share Patent expiry 2029	79,438 +32%	102,215 +29%	123,587 +21%	138,848 +12%	159,326 +15%	94,875 +14%	110,063
FFDS tablet Angina (OTC) 32% National market share	57,001 -3%	60,181 +6%	69,996 +16%	76,297 +9%	60,154 -21%	40,105 -6%	37,668 -6%
Banlangen granules Anti-viral/flu (OTC) 51% National market share	57,278 +8%	65,381 +14%	72,300 +11%	55,573 -23%	54,793 -1%	33,154 -4%	32,263
Seroquel tablets Bi-polar/Schizophrenia (Rx) 5% National market share	n/a	n/a	n/a	n/a	21,131	4,493	17,184 +282%
NXQ tablet Cerebrovascular disease (Rx) Proprietary formulation	3,741 +55%	6,933 +85%	10,142 +46%	14,681 +45%	17,581 +20%	7,868 -1%	9,315 +18%
KYQ granules Periodontitis (OTC) >90% National market share	15,412 +22%	16,351 +6%	16,318 <i>0%</i>	18,370 +13%	17,051 -7%	11,449 +1%	9,972 -13%
Danning tablet Gallbladder/stone (Rx) Patent expiry 2027	9,914 +22%	11 ,648 +17%	12,364 +6%	13,822 +12%	13,526 -2%	5,559 -21%	5,414 -3% (US\$'000)
[1] Based on aggregate sales and gross profit of consolidated s	ubsidiaries and non-consolid	lated joint ventures; [2] R	Rx = prescription drug; OTC :	= over-the-counter drug; S	XBX pill = She Xiang Bao X	in pill; FFDS tablet = Fu	(Growth % vs. Year Ago)

Upcoming near-term catalysts

Next 6-9 months

Publishing data on 4 drug candidates in 5 Phase Ib-III studies:

- ✓ Savolitinib Phase II data in PRCC.
- ✓ Epitinib Phase Ib data in NSCLC with brain metastasis.
- ✓ Fruquintinib Phase II data in third-line NSCLC.
- ✓ Sulfatinib Phase II data in pancreatic and extra-pancreatic NET.
- ✓ Fruquintinib Phase III top-line data in third-line or above colorectal cancer potential NDA submission in mid-2017.

Likely to initiate three pivotal registration trials on two further drug candidates:

- ✓ Savolitinib Phase III in c-Met-driven PRCC.
- ✓ Epitinib Phase II/III in first-line patients with EGFR-mutant NSCLC with brain metastasis.
- ✓ Savolitinib Phase III in combination with Tagrisso® (osimertinib) in second-line NSCLC (T790M-/c-Met+).

Appendices

Two main platforms

Converging towards one vision

A globally-focused innovative biopharmaceutical company based in China

Innovation Platform

small molecule targeted therapies in oncology & immunology

- ✓ 7 oncology drug candidates in 25 studies worldwide.
- ✓ 4 pivotal Phase III trials underway; with 3 further targeted in H1 2017.
- ✓ Many with global first-in-class or best-in-class as well
 as Breakthrough Therapy potential.
- ✓ >310-person R&D team.

Commercial Platform

an extensive commercial network in China pharma

- ✓ Over 3,200-person China sales team clear focus on Prescription Drugs business (~2,000 medical reps).
- ✓ Ready to rapidly commercialise Innovation Platform drugs once approved in China.
- ✓ H1 2016 sales^[1] up 16% to \$331.9 million.
- \checkmark H1 2016 net income up 12% to \$22.1 million.

Experienced pharma management team

POSITION	EXPERIENCE (yrs) Industry / Chi-Med	ROLE / BACKGROUND
CHRISTIAN HOGG, BSc, MBA Chief Executive Officer	P&G Procter & Gamble 27 / 16	Led all aspects of the creation, implementation & management of Chi-Med's strategy, business & IPOs since 2000 start - incl. AZ, Lilly, Nestlé deals & est. of pharma business.
WEIGUO SU, PHD EVP, Chief Scientific Officer	Pfizer 26/11	Created Chi-Med's R&D strategy, innovation platform & led all pipeline discovery; Director of Med Chem at Pfizer; Harvard Ph.D./post-doc under Nobel Laureate E. J. Corey.
JOHNNY CHENG, BEC, CA Chief Financial Officer	Bristol-Myers Squibb 26 / 7	Former VP, Finance at BMS China; 8 years with Nestlé China heading finance & control in multiple businesses; KPMG & PWC in Australia & Beijing.
YE HUA, MD, MPH SVP, Clinical & Regulatory Affairs	NOVARTIS Celgene 17/2	Led Revlimid & Pomalyst global development in multiple myeloma; 15 yrs of global registrations incl. Humira, Zometa, Reclast, Femara, Cardioxane, Proleukin.
ZHENPING WU, PHD, MBA SVP, Pharmaceutical Sciences	Roche Pfizer 22/8	Leads all CMC development & manufacturing for Chi-Med's pipeline; Sr Director of PS at Phenomix; Director of Pharma Development at Pfizer San Diego; at Roche in Palo Alto.
MAY WANG, PHD SVP, Bus. Dev. & Strategic Alliances	Lilly 21/5	Leads alliance mgmt & BD for Chi-Med; long career in research, primarily biology, strategic alliance management, partnering & business development with Eli Lilly.
MARK LEE, BEng, MBA SVP, Corp. Finance & Development	CREDIT SUISSE 16/7	Focuses on strategic management, overall corporate operations & alliance support; Former US/UK banker advising & raising capital for major pharma & biotech.

- Management team comprised mainly of returnees averaging ~20 years in multinational pharma & biotech.
- Scientific leadership have participated in the discovery & development of global blockbusters.

Three collaborations have major aggregate financial impact

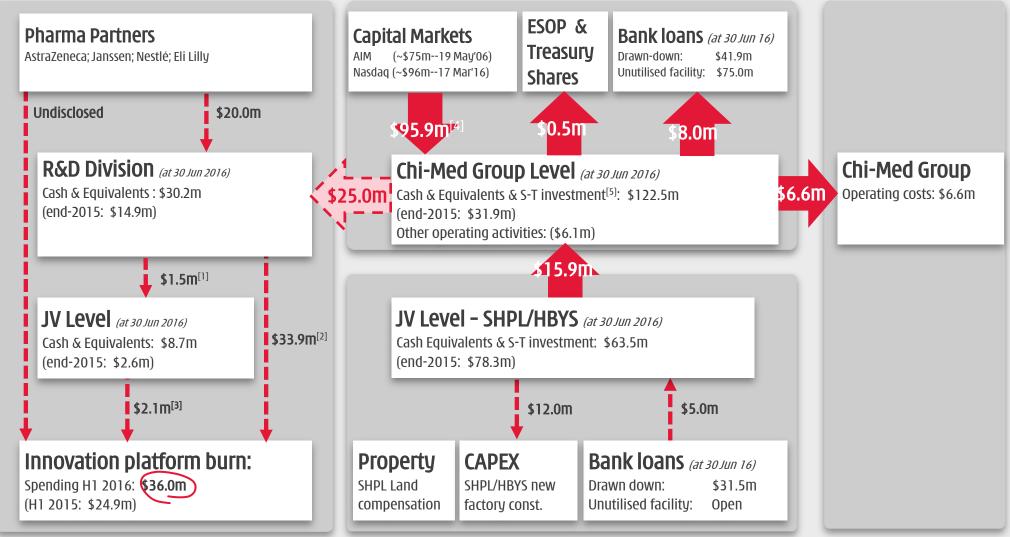
~\$1.2 billion in Partner payments to HMP/NSP^[1]:

- \$118.5 million in upfront /milestone payments and equity injections as at June 30, 2016.
- **up to \$350 million** in further development and approvals milestones
- up to \$145 million in option payments.
- up to \$560 million in commercial milestones.
- customary tiered royalties on net sales.

Clinical trial spending^[2]:

- clinical costs for partnered drug candidates estimated at several hundred million US dollars.
- Partners to fund the vast majority of these clinical costs.

Possible payment events in H2 2016/early 2017:

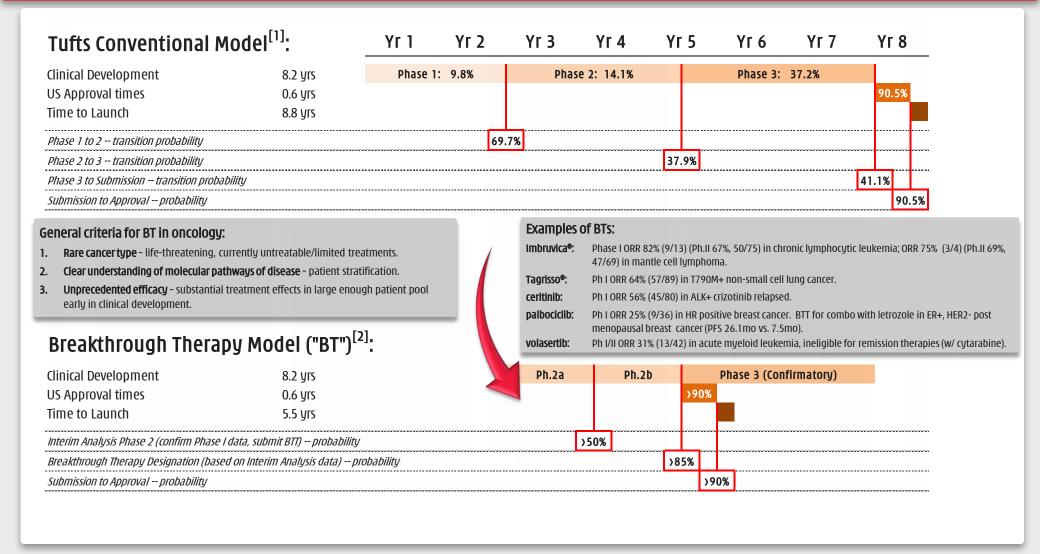

■ **Savolitinib (AZD6094)**: Phase III initiation PRCC^[3]

^[1] Nutrition Science Partners Limited ("NSP") is the 50/50 joint venture between Nestlé Health Science ("Nestlé") and Chi-Med; [2] includes clinical and direct non-clinical costs. [3] PRCC = papillary renal cell carcinoma.

Inter-group cash flow

CHI-MED

~\$123m in cash available, >\$70m in undrawn bank facilities


54 [1] \$5.0m capital injection to NSP offset by \$3.5m service income received from NSP; [2] Including all Innovation Platform research & development cost and general & admin. expenses; [3] Share of NSP operating loss; [4] Net proceeds: Gross proceeds deducted underwriting discounts and commissions, and other offering expenses; [5] Including \$46.6m short-term investment (over 3-month deposit) at 30 June 2016.

(US\$ millions)

Breakthrough Therapy Model

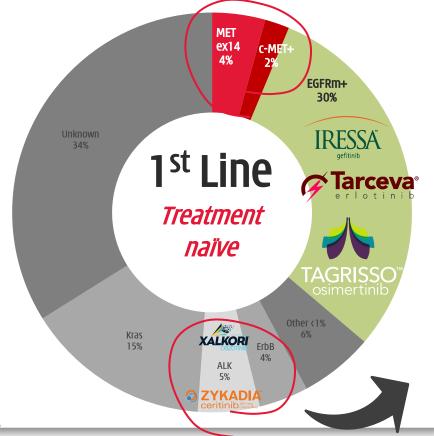
^[1] Tufts Center for the Study of Drug Development (Feb 2010) - Transition probabilities for small molecule oncology drugs based on data of the 50 largest pharmaceutical companies 1993 through June 2009;

^[2] Hypothetical probabilities for BT estimated by Chi-Med - for general reference only, probabilities will vary dramatically based on scale/quality of Phase I data.

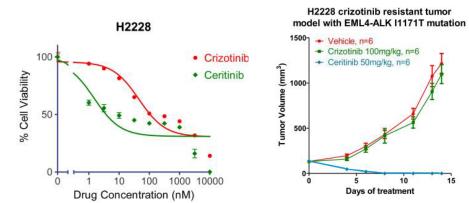
AstraZeneca's Tagrisso®

Fastest U.S. FDA drug approval – just 2 yrs. 8 mo.

- Savolitinib has exhibited over 80% Objective Response Rate (5/6 pts.) to-date in T790M- / c-MET+ NSCLC if Phase IIb study re-affirms this we will follow the same accelerated approvals path taken by Tagrisso.
- Phase IIb study to complete end-2016 with ORR >45% in Phase IIb (12/28 pts.) we can expect:
 - Breakthrough Therapy designation by mid-2017.
 - ✓ Savolitinib submission for approval end-2018 and US FDA approval by mid-2019.



Savolitinib – 1st Line NSCLC

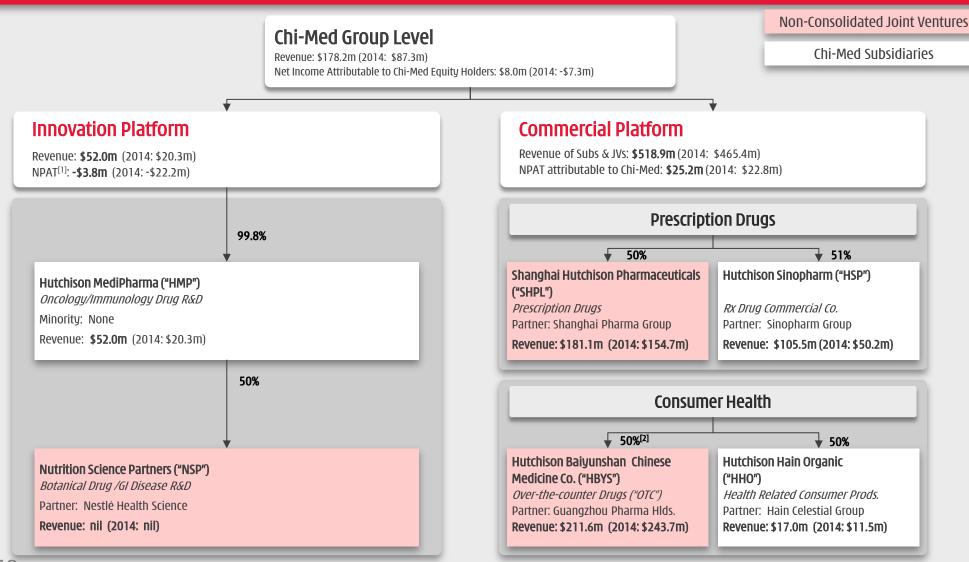


Comparisons drawn from Zykadia® (ceritinib) superiority over crizotinib (Xalkori®)

1. 1st Line NSCLC is the largest MET-driven patient population in NSCLC (c-Met+ & exon14 skip). Unmet medical need and possible Breakthrough Therapy area.

2. Why is Zykadia® superior to Xalkori® in ALK? H2228 crizotinib resista model with EML4-ALK 1117

....because it is more selective and covers target fully^[1].

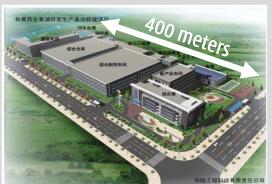

3. Leading to more durable response in ALK patients.....

Endpoin	nt, 95% CI	Zykadia® (ceritinib)	Xalkori® (crizotinib)	Hazard Ratio	P-value
DEC	Median, mo.	13.8 (11.1-NE)	8.3 (7.3-9.3)	0.52 (0.44-0.62)	⟨.001
PFS	12-mo rate, %	58 (48-71)	37 (33-42)	-	⟨ .001
00	Median, mo.	NE (19.6-NE)	20.5 (19.9-29.6)	0.59 (0.46-0.75)	⟨.001
OS	12-mo rate, %	83 (75-91)	66 (62-70)	_	⟨ .001
ORR	rate, %	68 (61-76)	61 (57-65)	-	.102

....and clear survival benefit^[2].

Chi-Med Group structure - major entities

New factories - triple capacity



JVs fund internally - \$137.4m of total \$140m (~98%) CAPEX already spent

SHPL New Factory - SOP[1] Q3 2016

Feng Pu District, 78,000 sq.m. plot (~40km south of Shanghai city center). Approx. 3x designed capacity expansion (extraction & formulation).

Estimated total CAPEX: \$100 m (comprising construction & relocation costs)

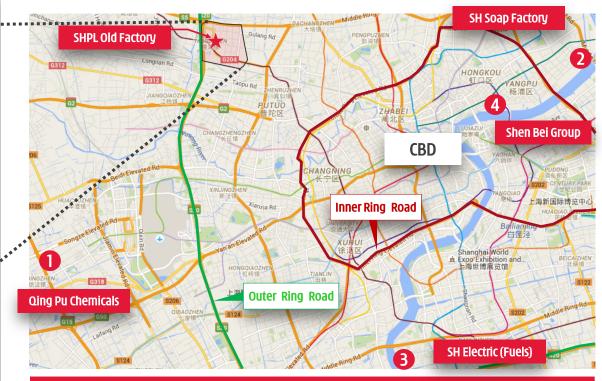
HBYS New Factory - SOP early 2017

Bozhou, Anhui province (central China). 230,000 sq.m. plot. Approx. 3x extraction expansion & new formulation lines.

Estimated total CAPEX: \$40 m



SHPL old factory site surrender – December 2015



~\$114 million cash compensation/subsidies - 3 payments in 2015/16/17

4.6 sq.km. new development zone 12km from CBD (re-zoned in 2014).

- "Smart City" new science & tech, commercial and residential area.
- SHPL old factory classified as Cat. 3 residential.

	Land Area (sq.m.)	Other Factors	Approx. Distance to CBD ^[1] (km)	Approx. Distance to Metro ^[2] (m)	Actual Compensation (US\$ million)	Compensation (\$/sq.m.)
★ SHPL Old Factory Plot	57,804	New Dev.	12.4	300	114.0	1,972
① Qing Pu Chemicals Plot	77,372	Nr. Airport	21.2	2,200	108.4	1,401
2 Shanghai Soap Factory Plot	62,846	Nr. River	8.0	500	122.6	1,951
3 Shanghai Electric (Fuels) Plot	27,091	Nr. River	11.4	2,000	89.1	3,290
4 Shen Bei Group Plot	4,976	Nr. River	3.3	300	34.5	6,928

HBYS Plot 1&2 – 9km from Guangzhou city center

Property compensation expected in the range of ~\$120 million^[2]

HBYS Plot 2 (26,700 sq.m. plot of land):

2.2 plot ratio, ~58,740 sq.m. of residential floor area. Estimated Auction Price^[1]: \$123.4 million (\$2,100/sq.m.).

163 Tong Bao Road (131,647 sq.m. plot of land):

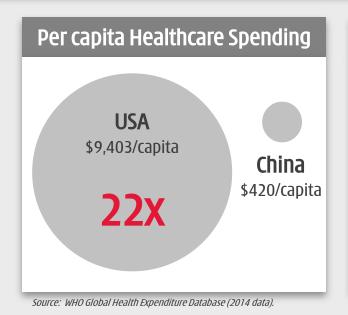
Auction Date: November 24th 2014

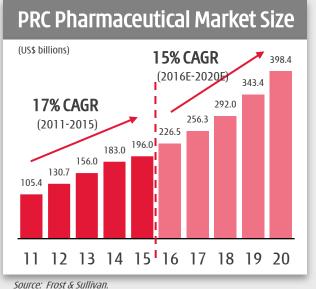
~3.5 plot ratio, 460,765 sq.m. of residential floor area. Actual Auction Price: \$1,034 million (\$2,244/sq.m.).

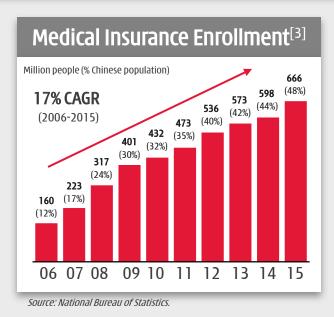
8-10 Tong Bao Road (65,055 sq.m. plot of land):

Auction Date: May 6th 2013

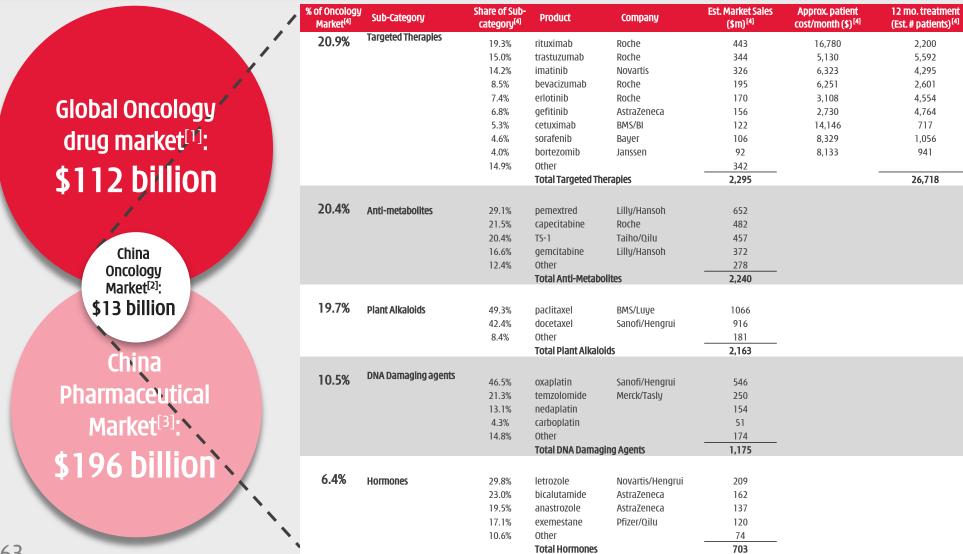
2.2 plot ratio, 143,121 sq.m. of residential floor area. Actual Auction Price^[1]: \$305 million (\$2,132/sq.m.).


HBYS Plot 1 (59,400 sq.m. plot of land)




Tong He Metro Station (opened November 2010)

China pharma market set to become the second largest globally by 2016


China pharmaceutical industry growth 17% CAGR^[1] from 2011-2015 - one of the highest rated industries in China with average P/E ratio of 38 for the 61 listed companies (slide 65).

- Government healthcare spending grew 19% CAGR^[2] from 2010 2013 and continues to increase rapidly - Strategic priority.
- Expansion of State Medical Insurance Schemes^[3] Link to increased drug reimbursement & sales.

Targeted therapies - fastest growth & largest[1]

Pricing beyond reach of the 3.4 million new cancer patients/year in China

China Commercial Platform has substantial value

- Chi-Med's Commercial Platform continues to perform well relative to our peer group.
- The real market value, based on peer group multiples is approximately \$1.96 billion.^[3] Considering our share in the JVs, Chi-Med's share of this value is approximately \$900-920 million.

			NET SALES			NET F	VALUATION			
	Code	2014	2015	14-15 Growth	2014	2015	14-15 Growth	2015 Margin	Market Cap.	P/E ^[2]
CHI-MED Commercial Platform Subsidiaries/JVs ^[1]		465.4	518.9	11%	48.8	54.1	11%	10%	na	na
Tianjin Zhong Xin Pharma	600329	1,076.4	1,075.4	0%	57.6	69.5	21%	7%	2,125	30
Li Zhu Pharma	000513	842.1	1,005.5	19%	84.1	100.2	19%	10%	2,491	28
Shandong Dong E E Jiao	600422	608.9	827.7	36%	208.4	248.8	19%	30%	5,622	23
Zhejiang Kang En Bai Pharma	600572	544.0	805.3	48%	110.5	76.5	-31%	10%	2,551	36
Kunming Pharma	000423	625.8	746.6	19%	46.7	65.5	40%	9%	1,693	23
Guizhou Yi Bai Pharma	600750	479.5	501.6	5%	73.1	29.2	-60%	6%	2,142	66
Jin Ling Pharma	000919	421.0	489.3	16%	37.2	39.8	7%	8%	1,142	38
Jiangsu Kang Yuan	600557	389.3	428.4	10%	49.1	55.5	13%	13%	1,615	28
Jiang Zhong Pharma	600750	430.5	394.5	-8%	40.5	55.9	38%	14%	1,436	23
Zhuzhou Qian Jin Pharma	600479	333.3	371.6	12%	17.9	13.4	-25%	4%	919	57
Peer Group Weight Avg. (10 Comps. excl. Chi-Med)		575.1	664.6	16%	72.5	75.4	4%	11%	2,174	33
61 Listed China Pharma. Companies Weight Average		915.4	1,000.9	9%	67.2	80.3	19%	8%	2,718	38

Peer Group: 10 companies (excl. Chi-Med) selected as ALL listed and profitable mainland Chinese OTC/RX pharma manufacturing companies, with a focus on similar product types, and 2015 Net Sales in the ~\$350-1,100 million range.

^[1] Total aggregate PRC domestic results of Chi-Med's 6 Commercial Platform companies (HBYS, SHPL, Hutchison Sinopharm, HHO, HHL, & HCPL), excluding discontinued operations;

^{64 [2]} Price Earnings Ratio as at July 11th, 2016: Trailing Twelve Month PE weight averaged based on market capitalization;

^[3] Peer group multiple of 33 x \$54.1 million +10% -- Reported 2015 NPAT + 10% growth in H1 2016.

Drug R&D Division proxy peer group (1/2)

HMP - A very deep pipeline and a very large organization/operation

Mkt Cap				20	015		Clinical Pipeline					studie			
Sym	Name	22 Jul '16	22 Jul '15	22 Jul '14	Ent. Value	Staff	Sales	EBITDA	Drug	Studies	Phase	Partner	drugs	P1	P2 F
GEN-DK	Genmab	10,136	5,786	2,140	9,615	186	168	87	Ofatumumab	CLL, follicular lymphoma	2xP3, Approved	Novartis	11	8	3 .
					Ofatumumab	Relapsing remitting multiple sclerosis	P3	GSK, transfer to							
					(subcutaneous)			Novartis							
									Daratumumab	Multiple myeloma, Non-Hodgkin's lymphoma	P3, P2	Janssen			
									Tisotumab	Solid cancers	P1	Seattle Genetics			
									Teprotumumab	Graves' orbitopathy, diabetic macular edema	P2, P1	River Vision			
									HuMax-TAC-ADC	Lymphoma, acute myeloid leukemia	2x P1	ADC Therapeutics	•		
									HuMax-IL8	Metastatic solid tumors	P1	Cormorant			
									JNJ-61186372	NSCLC	P1	Janssen			
									JNJ-61178104	Autoimmune disorder	P1	Janssen	•		
									JNJ-63709178	acute myeloid leukemia	P1	Janssen			
									AMG 714	Celiac disease	P2	Amgen			
TSRO	Tesaro	4,605	2,558	1,049	4,415	286	0	(233)	Rolapitant (IV)	NK-1 receptor inhibitor: chemo-induced nausea and vomiting (CINV)	P3	-	2	2	1
									Niraparib	PARP inhibitor: Ovarian cancer, BRCA+breast cancer, Ewing's sarcoma	2x P3, P2, 2x P1	-			
JUNO Juno 3,074 4,731 NA 2,136	Juno	3,074	4,731	NA	2,136	306	18	(232)	JCAR015	Acute lymphoblastic leukemia, non-Hodgkin's lymphoma	P2, P1	-	9	12	1 (
						JCAR017	Pediatric acute lymphoblastic leukemia, adult non-Hodgkin's lymphoma	P1/2, P1	-						
					JCAR014	Adult B cell malignancies	P1/2, P1	-							
						JTCR016	AML, NSCLC	P1/2, P1	-	•					
					JCAR023	Neuroblastoma, solid tumors	P1		•						
								JCAR018	B Cell Malignancies	P1	Opus Bio				
									JCAR020	MUC16 & IL-12: Ovarian	P1				
					JCAR021	B Cell Malignancies	P1	-	•						
				JCAR024	ROR-1: CLL, solid tumor	P1	-	•							
GLPG-NL	Galapagos	2,423	2,199	587	1,327	435	44	(119)	Filgotinib	Rheumatoid arthritis, Crohn's disease, UC	P3, 2xP2	Gilead	6	4	5
									GLPG1690	Idiopathic pulmonary disease	P2	-	•		
									GLPG1837	Cystic fibrosis	P2, P1	AbbVie			
									GLPG2222	Cystic fibrosis	P2, P1	AbbVie			
									GLPG1972	Osteoarthritis	P1	Servier			
									MOR106	Inflammation	P1	Morphosys	•		
EXEL	Exelixis	1.985	1,237	699	2.052	115	37	(102)	Cabozantinib	Medullary thyroid cancer, advanced renal cell carcinoma	Marketed, NDA	lpsen	5	7	5
									Cobimetinib	MEK inhibitor: Unresectable locally adv or met melanoma	P2. 2xP1b	Genentech			
									XL888	HSP90 inhibitor: solid tumors	P1				
									SAR245408	PI3K inhibitor: Adv or recurr endometrial cancer, ER/PR+ HER2- breast cancer	P2	Sanofi			
									SAR245409	PI3K/mTOR inhibitor	P2, 3xP1b/2, P1	Sanofi			
					CS-3150	Non-steroidal MR antagonist	2x P2a (in Japan)	Daiichi-Sankyo							
	Hutchison					>310	52	(4)	Savolitinib	c-Met TKI: PRCC x2, CCRCC x2, NSCLC x4, GC x4	4xP2. 8xP1b	AstraZeneca	7	16	5 4
	MediPharma					,,,,		(.)	Fruquintinib	VEGFR TKI: CRC, NSCLC, GC	2xP3, 1xP1b	Eli Lilly			
									Sulfatinib	VEGFR/FGFR TKI: Neuroendocrine tum. x3, thyroid cancer	2x P3, P2, 2xP1	-			
									HMPL-523	SYK TKI: Inflammation (RA/MS/Lupus), hematological cancers	2xP1	-			
									Epitinib	EGFR TKI: NSCLC with brain mets	P1b	=			
									Theliatinib	EGFR TKI: esophageal, other solid tum.	P1	=			
									HMPL-689	PI3Kδ TKI: hematological cancers	P1	=			
								HMPL-004	UC induction, UC maintenance, Crohn's	Under review	Nestlé Health Science				

Drug R&D Division proxy peer group (2/2)

HMP - A very deep pipeline and a very large organization/operation

			Mkt Cap			_	20	015		Clinical Pipeline			# of	# 01	f stuc	es
Sym	Name	22 Jul '16	22 Jul '15	22 Jul '14	Ent. Value	Staff	Sales	EBITDA	Drug	Studies	Phase	Partner	drugs	P1	P2	P
	3,162	308	1,511	75	0	(99)	Abaloparatide-SC	Osteoporosis (subcutaneous Injection)	MAA submitted		3	1	2	0		
	Health								Abaloparatide-TD	Osteoporosis (transdermal patch)	P2					
									RAD1901	Vasomotor symptoms, Estrogen Receptor (ER) + breast cancer	P2a completed, P1	Novartis				
AGIO Agios 1,601 4,378 1,258 1,2	1,258	1,289	208	59	(115)	AG-221	IDH2m inhibtor: R/R AML, frontline AML, MDS/hematologic malignancies	P3, 4xP1	Celgene	5	11	3	2			
					AG-120	IDH1m inhibitor: frontline AML, R/R AML, MDS/hematologic malignancies, solid	P3, P2, P1/2, 4x P1	Celgene (ex-US rights)								
						tumors, IHCC										
									AG-881	pan-IDHm inhibitor: R/R AML, solid tumors	2xP1	Celgene				
									AG-348	PK (R) activator: PK deficiency	P2					_
ARIA Ariad 1,553 1,553 953	1,847	459	119	(205)	Iclusig (ponatinib)	ABL inhibitor: CML, Ph+ ALL, AML, lung cancer, gastrointestinal stromal tumors,	Marketed, NDA, P3, S	X-	3	2	5	2				
					goroomy yagayaya	medullary thyroid cancer, biliary cancer	P2, P1									
										ALK inhibitor: NSCLC (resistant & 1st line)	NDA, P3	-				
	1 770	11/0	15.		(2.10)	AP32788	NSCLC	P1/2			_	_	_			
PBYI	Puma	1,349	3,215	1,778	1,168	156	0	(240)	PB272 (neratinib)	Adjuvant breast, metastatic breast, metastatic breast with brain mets, neoadjuvant	P3 completed, P3,	-	- 1	U	/	- 2
ADDO	Adura	905	1015	ALA	503	1111	77	(12)	CDC 207	breast, HER2 mutated NSCLC, HER2 mutated breast, HER2 mutated solid tumors	7x P2	Incuto			_	_
ADRO Aduro 905 1,812 NA	503	111	73	(13)	CRS-207 ADU-623	Pancreatic cancer, mesolthelioma, ovarian cancer Glioblastoma	2x P2, P1 P1	Incyte	4	4	2	0				
									ADU-023		P1	- Innecon				
						ADU-741	Lung cancer Prostate cancer	P1	Janssen Janssen							
ZIOP	Ziopharm	592	1,639	326	467	28	4	(110)	Ad-RTS-IL-12	DNA-based IL-12 modulator: metastatic breast cancer, GBM	P2, P1	Intrexon	-	4	0	0
ZIUP	Ziopiiaiiii	392	1,039	320	407	20	4	(110)	CAR/Cutokine prod	B-cell malignancy	P2, P1	Intrexon	2	4	U	U
CLVS Clovis 545 3,233 1,233	379	309	0	(299)	Rucaparib	PARP inhibitor: ovarian cancer treatment/maintenance	P3, 2x P2, P1	-	2	1	4	-1				
CEV3 CIOVIS	545	3,233	1,233	317	307	0	(277)	Lucitanib	FGFR1-2/VEGFR1-3/PDGFR _Q -ß inhibitor: breast cancer, lung cancer	2x P2	Servier (US & Japan)	2		7		
CLDX Celidex 46	468	2,515	1,139	214	199	5	(126)		Glycoprotein NMB inhibitor: TNBC, metastaic melanoma	4x P2, P1	-	5	7	6	0	
CLDA	CONTOCK	100	2,5.5	.,	2			(120)	Varlilumab	CD27: Solid tumors, metastatic melanoma, renal cell carcinoma	P2, 3x P1	BMS, Roche		•	•	Ĭ
					CDX-1401 (mab)	NY-ESO-1 tumor antigen: Metastatic melanoma, Ovarian, Fallopian and Primary	P2, P1									
										Peritoneal Carcinoma	,					
									CDX-301 (mab)	Flt3 inhibitor: B-cell lumphomas	P1	-				
									CDX-014 (mab)	TIM-1 inhibitor: Mestatic Renal Cell Carcinoma	P1	-				
IMGN	ImmunoGen	248	1,631	972	260	317	57	(98)	Mirvetuximab	ADC: FR α + ovarian and other solid tumor	P3, P1	-	14	9	4	2
									Coltuximab	CD19+ antibody: diffuse large B-cell lymphoma	P2	Returned by Sanofi				
									IMGN-529	ADC: CD37+ Non-hodgkins lymphoma and CLL	P2					
									Kadcyla (Herceptin)	HER2+ met BC 2L, met BC 1L, BC others, gastric, NSCLC	Marketed, P3	Roche; TPG (royalties)				
					10 others, all	Solid tumors, Mesothelioma, Glioblastoma, Kidney, P-cad+ cancer	9x P1	Amgen, Bayer, Lilly,								
									partnered			Novartis and Sanofi				
AVERAGE (A		2,245	2,832	1,037									5	5	3	1
MEDIAN (AI		1,577	2,537	1,011									4	4	3	1
	Hutchison					>310	52	(4)		c-Met TKI: PRCC x2, CCRCC x2, NSCLC x4, GC x4	4xP2, 8xP1b	AstraZeneca	7	16	5	4
	MediPharma								Fruquintinib	VEGFR TKI: CRC, NSCLC, GC	2xP3, 1xP1b	Eli Lilly				
									Sulfatinib	VEGFR/FGFR TKI: Neuroendocrine tum. x3, thyroid cancer	2x P3, P2, 2xP1	-				
									HMPL-523	SYKTKI: Inflammation (RA/MS/Lupus), hematological cancers	2xP1 P1b	-				
									Epitinib The listinib	EGFR TKI: NSCLC with brain mets		-				
									Theliatinib	EGFR TKI: esophageal, other solid tum.	P1 P1	-				
									HMPL-689 HMPL-004	PI3K& TKI: hematological cancers UC induction. UC maintenance. Crohn's	Under review	- Nestlé Health Science				
									HIMPL-004	oc maaction, oc maintendice, croims	Olidel Teview	ivesue nealul science				

HUTCHISON CHINA MEDITECH

Thank you